Please wait a minute...
Chin. Phys. B, 2009, Vol. 18(2): 715-725    DOI: 10.1088/1674-1056/18/2/051
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

The quantum pressure correction to the excitation spectrum of the trapped superfluid Fermi gases in a BEC-BCS crossover

Dong Hang(董行) and Ma Yong-Li(马永利)
Department of Physics, Fudan University, Shanghai 200433, China
Abstract  Using quantum hydrodynamic approaches, we study the quantum pressure correction to the collective excitation spectrum of the interacting trapped superfluid Fermi gases in the BEC-BCS crossover. Based on a phenomenological equation of state, we derive hydrodynamic equations of the system in the whole BEC-BCS crossover regime. Beyond the Thomas--Fermi approximation, expressions of the frequency corrections of collective modes for both spherical and axial symmetric traps excited in the BEC-BCS crossover are given explicitly. The corrections of the eigenfrequencies due to the quantum pressure and their dependence on the inverse interaction strength, anisotropic parameter and particle numbers of the condensate are discussed in detail.
Keywords:  BEC-BCS crossover      hydrodynamic approaches      perturbation method  
Received:  06 August 2008      Revised:  05 September 2008      Accepted manuscript online: 
PACS:  03.75.Kk (Dynamic properties of condensates; collective and hydrodynamic excitations, superfluid flow)  
  03.75.Ss (Degenerate Fermi gases)  
  37.10.De (Atom cooling methods)  
  05.30.Fk (Fermion systems and electron gas)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos 10574028, 10775032 and J0730310).

Cite this article: 

Dong Hang(董行) and Ma Yong-Li(马永利) The quantum pressure correction to the excitation spectrum of the trapped superfluid Fermi gases in a BEC-BCS crossover 2009 Chin. Phys. B 18 715

[1] Observation of the BEC-BCS crossover in a degenerate Fermi gas of lithium atoms
Xiang-Chuan Yan(严祥传), Da-Li Sun(孙大立), Lu Wang(王璐), Jing Min(闵靖), Shi-Guo Peng(彭世国), and Kai-Jun Jiang(江开军). Chin. Phys. B, 2022, 31(1): 016701.
[2] Dynamics analysis of a 5-dimensional hyperchaotic system with conservative flows under perturbation
Xuenan Peng(彭雪楠), Yicheng Zeng(曾以成), and Qi Xie(谢奇). Chin. Phys. B, 2021, 30(10): 100502.
[3] Numerical simulation on modulational instability of ion-acoustic waves in plasma
Yi-Rong Ma(马艺荣), Lie-Juan Li(李烈娟), Wen-Shan Duan(段文山). Chin. Phys. B, 2019, 28(2): 025201.
[4] Ground-state energy of beryllium atom with parameter perturbation method
Feng Wu(吴锋), Lijuan Meng(孟丽娟). Chin. Phys. B, 2018, 27(9): 093101.
[5] Soliton excitations in a polariton condensate with defects
Abderahim Mahmoud Belounis, Salem Kessal. Chin. Phys. B, 2018, 27(1): 010307.
[6] Application of asymptotic iteration method to a deformed well problem
Hakan Ciftci, H F Kisoglu. Chin. Phys. B, 2016, 25(3): 030201.
[7] K—P—Burgers equation in negative ion-rich relativistic dusty plasma including the effect of kinematic viscosity
A N Dev, M K Deka, J Sarma, D Saikia, N C Adhikary. Chin. Phys. B, 2016, 25(10): 105202.
[8] Space–time fractional KdV–Burgers equation for dust acoustic shock waves in dusty plasma with non-thermal ions
Emad K. El-Shewy, Abeer A. Mahmoud, Ashraf M. Tawfik, Essam M. Abulwafa, Ahmed Elgarayhi. Chin. Phys. B, 2014, 23(7): 070505.
[9] Perturbation method of studying the EI Niño oscillation with two parameters using delay sea–air oscillator model
Du Zeng-Ji (杜增吉), Lin Wan-Tao (林万涛), Mo Jia-Qi (莫嘉琪 ). Chin. Phys. B, 2012, 21(9): 090201.
[10] Approximate solution of the magneto-hydrodynamic flow over a nonlinear stretching sheet
Eerdunbuhe(额尔敦布和) and Temuerchaolu(特木尔朝鲁) . Chin. Phys. B, 2012, 21(3): 035201.
[11] Variational-integral perturbation corrections of some lower excited states for hydrogen atoms in magnetic fields
Yuan Lin (袁琳), Zhao Yun-Hui (赵云辉), Xu Jun (徐军), Zhou Ben-Hu (周本胡), Hai Wen-Hua (海文华). Chin. Phys. B, 2012, 21(10): 103103.
[12] Ground eigenvalue and eigenfunction of a spin-weighted spheroidal wave equation in low frequencies
Tang Wen-Lin (唐文林), Tian Gui-Hua (田贵花). Chin. Phys. B, 2011, 20(5): 050301.
[13] Solving ground eigenvalue and eigenfunction of spheroidal wave equation at low frequency by supersymmetric quantum mechanics method
Tang Wen-Lin(唐文林) and Tian Gui-Hua(田贵花). Chin. Phys. B, 2011, 20(1): 010304.
[14] Modified KdV equation for solitary Rossby waves with $\beta$ effect in barotropic fluids
Song Jian(宋健) and Yang Lian-Gui(杨联贵). Chin. Phys. B, 2009, 18(7): 2873-2877.
[15] Direct perturbation method for perturbed complex Burgers equation
Cheng Xue-Ping(程雪苹), Lin Ji(林机), and Yao Jian-Ming(姚建明). Chin. Phys. B, 2009, 18(2): 391-394.
No Suggested Reading articles found!