1 Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China; 2 School of Mathematics and Physics, Hubei Polytechnic University, Huangshi 435003, China; 3 College of Physics, Jilin University, Changchun 130012, China
Abstract We perform a theoretical study on dynamic interference in single photon ionization of ground state hydrogen atoms in the presence of a super-intense ultra-fast chirped laser pulse of different chirp types (equal-power and equal-FWHM laser pulses) by numerically solving the time-dependent Schrödinger equation in one dimension. We investigate the influences of peak intensity and chirp parameters on the instantaneous ionization rate and photoelectron yield, respectively. We also compare the photoelectron energy spectra for the ionization by the laser pulses with different chirp types. We find that the difference between the instantaneous ionization rates for the ionization of hydrogen atom driven by two different chirped laser pulses is originated from the difference in variation of vector potentials with time.
(Strong-field excitation of optical transitions in quantum systems; multiphoton processes; dynamic Stark shift)
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11774131 and 91850114).
Corresponding Authors:
Liguang Jiao, Aihua Liu
E-mail: lgjiao@jlu.edu.cn;aihualiu@jlu.edu.cn
Cite this article:
Fengzheng Zhu(朱风筝), Xiaoyu Liu(刘晓煜), Yue Guo(郭月), Ningyue Wang(王宁月), Liguang Jiao(焦利光), and Aihua Liu(刘爱华) Chirp-dependent ionization of hydrogen atoms in the presence of super-intense laser pulses 2021 Chin. Phys. B 30 094209
[1] Gould R G 1959 The Laser, Light Amplification by Stimulated Emission of Radiation. The Ann Arbor Conference on Optical Pumping (Ann Arbor: the University of Michigan) p. 128 [2] Li J, Ren X, Yin Y, Zhao K, Chew A, Cheng Y, Cunningham E, Wang Y, Hu S, Wu Y, Chini M and Chang Z 2017 Nat. Commun.8 186 [3] Gaumnitz T, Jain A, Pertot Y, Huppert M, Jordan I, Ardana-Lamas F and Wörner H J 2017 Opt. Express25 27506 [4] Wang X, Wang L, Xiao F, Zhang D, Lü Z, Yuan J and Zhao Z 2020 Chin. Phys. Lett.37 023201 [5] Song J, Meng X, Wang Z, Wang X, Tian W, Zhu J, Fang S, Teng H and We Z 2019 Chin. Phys. Lett.36 124206 [6] Brabec T and Krausz F 2000 Rev. Mod. Phys.72 545 [7] Krausz F and Ivanov M 2009 Rev. Mod. Phys.81 163 [8] Goulielmakis E, Loh Z, Wirth A, Santra R, Rohringer N, Yakovlev V S, Zherebtsov S, Pfeifer T, Azzeer A M, Kling M F, Leone S R and Krausz F 2010 Nature466 739 [9] Haessler S, Caillat J, Boutu W, Giovanetti-Teixeira C, TRuchon, Auguste T, Diveki Z, Breger P, Maquet A, B Carré R T and Saliéres P 2010 Nat. Phys.6 200 [10] Wu J, Zhang G T, Xia C L and Liu X S 2010 Phys. Rev. A82 013411 [11] Nakajima T 2007 Phys. Rev. A75 053409 [12] Xu L and Fu L B 2019 Chin. Phys. Lett.36 043202 [13] Yuan J, Ma Y, Li R, Ma H, Zhang Y, Ye D, Shen Z, Yan T, Wang X, Weidemüller M and Jiang Y 2020 Chin. Phys. Lett.37 053201 [14] Ciappina M F and Madsen L B 2008 Phys. Rev. A77 023412 [15] Laulan S, Albert M A and Barmaki S 2017 Can. J. Phys.95 900 [16] Strickland D and Mourou G 1985 Opt. Commun.55 447 [17] The extreme light infrastructure (ELI) project [Online; accessed 28-July-2020] [18] Eberly J H and Kulander K C 1993 Science262 1229 [19] Demekhin P V and Cederbaum L S 2012 Phys. Rev. Lett.108 253001 [20] Jiang W C and Burgdörfer J 2018 Opt. Express26 19921 [21] Guo J, Guo F, Chen J and Yang Y 2018 Acta Phys. Sin.67 073202 [22] Delone N B and Krainov V P 1999 Phys. Usp.42 669 [23] Bian X B, Huismans Y, Smirnova O, Yuan K J, Vrakking M J J and Bandrauk A D 2011 Phys. Rev. A84 043420 [24] Demekhin P V and Cederbaum L S 2013 Phys. Rev. A88 043414 [25] Baghery M, Saalmann U and Rost J M 2017 Phys. Rev. Lett.118 143202 [26] Müller A D, Kutscher E, Artemyev A N, Cederbaum L S and Demekhin P V 2018 Chem. Phys.509 145 [27] Wang M X, Liang H, Xiao X R, Chen S G, Jiang W C and Peng L Y 2018 Phys. Rev. A98 023412 [28] Wang N and Liu A 2019 Chin. Phys. B28 083403 [29] Tong Y, Jiang W, Wu P and Peng L 2016 Chin. Phys. B25 073202 [30] Barmaki S, Lanteigne P and Laulan S 2014 Phys. Rev. A89 063406 [31] Liao Q and Thumm U 2014 Phys. Rev. Lett.112 023602 [32] Laulan S, Ba H S and Barmaki S 2014 Can. J. Phys.92 194 [33] Laulan S, Haché J, Ba H S and Barmaki S 2013 J. Mod. Phys.4 20 [34] Yudin G L, Bandrauk A D and Corkum P B 2006 Phys. Rev. Lett.96 063002 [35] Han J, Wang J, Qiao Y, Liu A H, Guo F M and Yang Y J 2019 Opt. Express27 8768 [36] Carrera J J and Chu S I 2007 Phys. Rev. A75 033807 [37] Saleh B E A and Teich M C 1991 Fundamentals of Photonics (New York: Wiley) [38] He P L, Takemoto N and He F 2015 Phys. Rev. A91 063413
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.