|
|
Signal-recycled weak measurement for ultrasensitive velocity estimation |
Sen-Zhi Fang(方森智), Yang Dai(戴阳), Qian-Wen Jiang(姜倩文), Hua-Tang Tan(谭华堂), Gao-Xiang Li(李高翔), and Qing-Lin Wu(吴青林)† |
Department of Physics, Central China Normal University, Wuhan 430079, China |
|
|
Abstract Weak value amplification has shown its superiority in measurement of small physical effects. Here we introduce a signal-recycled weak-value-based velocity measurement strategy to decrease the attenuation of detected photons during the post-selection. Like the power-recycled scheme, we can improve the number of detected photons and signal-to-noise ratio of velocity by forming a cavity. However, optimal improvements of number of detected photons and signal-to-noise ratio cannot be obtained simultaneously in our signal-recycled scheme owing to the walk-off effect. Furthermore, we find that the reflected light is relatively strong compared with the power-recycled scheme, which may increase the collection-detection efficiency in prospective relevant experiment.
|
Received: 09 December 2020
Revised: 04 January 2021
Accepted manuscript online: 11 January 2021
|
PACS:
|
42.50.Xa
|
(Optical tests of quantum theory)
|
|
03.65.Ta
|
(Foundations of quantum mechanics; measurement theory)
|
|
06.30.Gv
|
(Velocity, acceleration, and rotation)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11674120 and 11734015), and the Fundamental Research Funds for the Central Universities of the Ministry of Education of China (Grant Nos. CCNU19TS074 and CCNU18CXTD01). |
Corresponding Authors:
Qing-Lin Wu
E-mail: qlwu@mail.ccnu.edu.cn
|
Cite this article:
Sen-Zhi Fang(方森智), Yang Dai(戴阳), Qian-Wen Jiang(姜倩文), Hua-Tang Tan(谭华堂), Gao-Xiang Li(李高翔), and Qing-Lin Wu(吴青林) Signal-recycled weak measurement for ultrasensitive velocity estimation 2021 Chin. Phys. B 30 060601
|
[1] Aharonov Y, Albert D Z and Vaidman L 1988 Phys. Rev. Lett. 60 1351 [2] Dixon P B, Starling D J, Jordan A N and Howell J C 2009 Phys. Rev. Lett. 102 173601 [3] Hogan J M, Hammer J, Chiow S W, Dickerson S, Johnson D M S, Kovachy T, Sugarbaker A and Kasevich M A 2011 Opt. Lett. 36 1698 [4] Li C F, Xu X Y, Tang J S, Xu J S and Guo G C 2011 Phys. Rev. A 83 044102 [5] Xu X Y, Kedem Y, Sun K, Vaidman L, Li C F and Guo G C 2013 Phys. Rev. Lett. 111 033604 [6] Brunner N and Simon C 2010 Phys. Rev. Lett. 105 010405 [7] Qiu X D, Xie L G, Liu X, Luo L, Li Z X, Zhang Z Y and Du J L 2017 Appl. Phys. Lett. 110 071105 [8] Hosten O and Kwiat P 2008 Science 319 787 [9] Zhou X, Xiao Z, Luo H and Wen S 2012 Phys. Rev. A 85 043809 [10] Viza G I, Rincon J M, Howland G A, Frostig H, Shom-roni I, Dayan B and Howell J C 2013 Opt. Lett. 38 002949 [11] Martínez-Rincón J, Chen Z k and Howell J C 2017 Phys. Rev. A 95 063804 [12] Magana-Loaiza O S, Mirhosseini M, Rodenburg B and Boyd R W 2014 Phys. Rev. Lett. 112 200401 [13] Martínez-Rincón J, Liu W T, Viza G I and Howell J C 2016 Phys. Rev. Lett. 116 100803 [14] Liu W T, Martínez-Rincón J, Viza G I and Howell J C 2017 Opt. Lett. 42 903 [15] Egan P and Stone J A 2012 Opt. Lett. 37 4991 [16] Li H, Huang J Z, Yu Y, Li Y, Fang C and Zeng G H 2018 Appl. Phys. Lett. 112 231901 [17] Li Y J, Li H J, Huang J Z, Fang C, Liu M M, Huang C Z and Zeng G H 2019 Opt. Express 27 21455 [18] Jordan A N, Martínez-Rincón J and Howell J C 2014 Phys. Rev. X 4 011031 [19] Viza G I, Martínez-Rincón J, Alves G B, Jordan A N and Howell J C 2015 Phys. Rev. A 92 032127 [20] Pang S, Dressel J and Brun T A 2014 Phys. Rev. Lett. 113 030401 [21] Ferrie C and Combes J 2014 Phys. Rev. Lett. 112 040406 [22] Knee G C and Gauger E M 2014 Phys. Rev. X 4 011032 [23] Abbott B P, Abbott R, Adhikari R et al. 2009 Rep. Prog. Phys. 72 076901 [24] Abadie J, Abbott B P, Abbott R et al. 2011 Nat. Phys. 7 962 [25] Dressel J, Lyons K, Jordan A N, Graham T M and Kwiat P G 2013 Phys. Rev. A 88 023821 [26] Lyons K, Dressel J, Jordan A N, Howell J C and Kwiat P G 2015 Phys. Rev. Lett. 114 170801 [27] Wang Y T, Tang J S, Hu G, Wang J, Yu S, Zhou Z Q, Cheng Z D, Xu J S, Fang S Z, Wu Q L, Li C F and Guo G C 2016 Phys. Rev. Lett. 117 230801 [28] Helstrom C W 1976 Quantum Detection and Estimation Theory (New York: Academic) [29] Holevo A S 1982 Probabilistic and Statistical Aspects of Quantum Theory (Berlin: Springer) [30] Liu J, Yuan H, Lu X M and Wang X 2020 J. Phys. A: Math. Theor. 53 023001 [31] Fang S Z, Zhu L L, Jin R B, Tan H T, Li G X and Wu Q L 2020 Opt. Commun. 460 125117 [32] Strain K A and Meers B J 1991 Phys. Rev. Lett. 66 1391 [33] Drever R W P, Hall J L, Kowalski F V, Hough J, Ford G M, Munley A J and Ward H 1983 Appl. Phys. B 31 97 [34] Hou L, Han H N, Wang W, Zhang L, Pang L H, Li D H and Wei Z Y 2015 Chin. Phys. B 24 024213 [35] Wang J R, Zhang H Y, Zhao Z L and Zheng Y H 2020 Chin. Phys. B 29 124207 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|