Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(5): 050202    DOI: 10.1088/1674-1056/abd165
GENERAL Prev   Next  

Closed form soliton solutions of three nonlinear fractional models through proposed improved Kudryashov method

Zillur Rahman1,2, M Zulfikar Ali2, and Harun-Or Roshid3,?
1 Department of Mathematics, Comilla University, Cumilla-3506, Bangladesh;
2 Department of Mathematics, Rajshahi University, Rajshahi-6205, Bangladesh;
3 Department of Mathematics, Pabna University of Science and Technology, Pabna-6600, Bangladesh
Abstract  We introduce a new integral scheme namely improved Kudryashov method for solving any nonlinear fractional differential model. Specifically, we apply the approach to the nonlinear space-time fractional model leading the wave to spread in electrical transmission lines (s-tfETL), the time fractional complex Schrödinger (tfcS), and the space-time M-fractional Schrödinger-Hirota (s-tM-fSH) models to verify the effectiveness of the proposed approach. The implementing of the introduced new technique based on the models provides us with periodic envelope, exponentially changeable soliton envelope, rational rogue wave, periodic rogue wave, combo periodic-soliton, and combo rational-soliton solutions, which are much interesting phenomena in nonlinear sciences. Thus the results disclose that the proposed technique is very effective and straight-forward, and such solutions of the models are much more fruitful than those from the generalized Kudryashov and the modified Kudryashov methods.
Keywords:  improved Kudryashov method, fractional electrical transmission line equation, fractional nonlinear complex Schrö      dinger equation, M-fractional Schrö      dinger-Hirota (s-tM-fSH)  
Received:  06 October 2020      Revised:  28 November 2020      Accepted manuscript online:  08 December 2020
PACS:  02.30.Jr (Partial differential equations)  
  02.30.Ik (Integrable systems)  
  04.20.Jb (Exact solutions)  
  05.45.Yv (Solitons)  
Corresponding Authors:  Harun-Or Roshid     E-mail:

Cite this article: 

Zillur Rahman, M Zulfikar Ali, and Harun-Or Roshid Closed form soliton solutions of three nonlinear fractional models through proposed improved Kudryashov method 2021 Chin. Phys. B 30 050202

[1] Zhou S, Li H and Zhu Z 2008 Chaos, Solitons and Fractals 36 973
[2] Abdou M A 2017 J. Ocean. Engin. Sci. 2 288
[3] Aminikhah H, Sheikhani A H R and Rezazadeh H 2016 Scientia IUranika 23 1048
[4] Saxena R and Kalla S 2010 Fract. Calc. Appl. Anal. 13 177
[5] Sulaiman T A, Bulut H and Atas S S 2019 Appl. Math. Nonl. Sci. 4
[6] Patra A 2019 Prog. Fractional Differ. Appl. 5 125
[7] Salinas M, Salas R, Mellado D, Graria A and Saavedra C 2018 Modelling and Simulation in Engineering 72 80306
[8] Magin R L 2010 Comput. Math. Appl. 59 1586
[9] Seadawy A R, Ali K K and Nuruddeen R I 2019 Results in Physics 12 2234
[10] El-Salam F A A 2013 J. Taibah Uni. Sci. 7 173
[11] Abdou M A and Soliman A A 2018 Results in Physics 9 1497
[12] Roshid H O and Rahman M A 2014 Results in Physics 4 150
[13] Feng L L and Zhang T T 2018 Appl. Math. Lett. 78 133
[14] Zedan A H, Alaidarous E and Shapll S 2013 Erratum Nonlinear Dyn. 74 1153
[15] Roshid H O 2017 J. Ocean. Engin. Sci. 2 196
[16] Wazwaz A M 2005 Appl. Math.Comput. 169 321
[17] Hoque M F and Roshid H O 2020 Phys. Scr. 95 075219
[18] Roshid H O and Ma W X 2018 Phys. Lett. A 382 3262
[19] Hossen M B, Roshid H O and Ali M Z 2018 Phys. Lett. A 382 1268
[20] Sirendaoreji and Sun J 2003 Phys. Lett. A 309 387
[21] Wazwaz A M 2004 Appl. Math. Comput. 159 559
[22] Wang M L 1996 Phys. Lett. A 213 279
[23] Yan Z 2003 Chaos, Solitons and Fractals 18 299
[24] Roshid H O, Alam M N, Hoque M F and Akbar M A 2013 Math. Stat. 1 162
[25] Hossen M B, Roshid H O and Ali M Z 2017 Int. J. Appl. Comput. Math. 3 679
[26] Zayed EME and Al-Nowehy A G 2017 J. Space Expl. 6
[27] Alhakim L A and Moussa A A 2019 J. Ocean. Engin. Sci. 4 7
[28] Alam M A and Li X 2020 Phys. Scr. 95 045224
[29] Sulaiman T A, Bulut H and Atas S S 2019 Appl. Math. Nonl. Sci. 4 535
[30] Zayed E M E and Alurrfi K A E 2015 Chaos, Solitons and Fractals 78 148
[31] Kumar D, Seadawy A R and Haque M R 2018 Chaos, Solitons and Fractals 115 62
[32] Shahoot A M. Alurrfi K A E, Elmrid M O M, Almsiri A M and Arwiniya A M H 2019 J. Taibah Uni. Sci. 13 63
[33] Laskin N 2002 Phys. Rev. E 66 056108
[34] Khater M M A, Seadawy A R and Lu D 2018 Pramana J. Phys. 90 59
[35] Sousa J V D C and Oliveira E C D 2018 Int. J. Anal. Appl. 16 83
[36] Bernstein I, Zerrad E, Zhou Q, Biswas A and Melikechi B 2015 Opto. Electron. Adv. Mater. Rapid Commun. 9 792
[37] Bernstein I, Melikechi N, Zerrad E, Aiswas B and Belic M 2016 J. Comput. Theor. Nanosci. 13 5288
[38] Ullah M S, Roshid H O, Ali M Z and Rahman Z 2019 Contemporary Mathematics 1 25
[39] Liu Y and Wen X Y 2019 Adv. Diff. Equs. 264 332
[1] Adaptive multi-step piecewise interpolation reproducing kernel method for solving the nonlinear time-fractional partial differential equation arising from financial economics
Ming-Jing Du(杜明婧), Bao-Jun Sun(孙宝军), and Ge Kai(凯歌). Chin. Phys. B, 2023, 32(3): 030202.
[2] Soliton molecules, T-breather molecules and some interaction solutions in the (2+1)-dimensional generalized KDKK equation
Yiyuan Zhang(张艺源), Ziqi Liu(刘子琪), Jiaxin Qi(齐家馨), and Hongli An(安红利). Chin. Phys. B, 2023, 32(3): 030505.
[3] The coupled deep neural networks for coupling of the Stokes and Darcy-Forchheimer problems
Jing Yue(岳靖), Jian Li(李剑), Wen Zhang(张文), and Zhangxin Chen(陈掌星). Chin. Phys. B, 2023, 32(1): 010201.
[4] Dynamical behavior and optimal impulse control analysis of a stochastic rumor spreading model
Liang'an Huo(霍良安) and Xiaomin Chen(陈晓敏). Chin. Phys. B, 2022, 31(11): 110204.
[5] Fusionable and fissionable waves of (2+1)-dimensional shallow water wave equation
Jing Wang(王静), Xue-Li Ding(丁学利), and Biao Li(李彪). Chin. Phys. B, 2022, 31(10): 100502.
[6] Propagation and modulational instability of Rossby waves in stratified fluids
Xiao-Qian Yang(杨晓倩), En-Gui Fan(范恩贵), and Ning Zhang(张宁). Chin. Phys. B, 2022, 31(7): 070202.
[7] A nonlocal Boussinesq equation: Multiple-soliton solutions and symmetry analysis
Xi-zhong Liu(刘希忠) and Jun Yu(俞军). Chin. Phys. B, 2022, 31(5): 050201.
[8] Dynamics and near-optimal control in a stochastic rumor propagation model incorporating media coverage and Lévy noise
Liang'an Huo(霍良安) and Yafang Dong(董雅芳). Chin. Phys. B, 2022, 31(3): 030202.
[9] Darboux transformation and soliton solutions of a nonlocal Hirota equation
Yarong Xia(夏亚荣), Ruoxia Yao(姚若侠), and Xiangpeng Xin(辛祥鹏). Chin. Phys. B, 2022, 31(2): 020401.
[10] Stability analysis of multiple-lattice self-anticipative density integration effect based on lattice hydrodynamic model in V2V environment
Geng Zhang(张埂) and Da-Dong Tian(田大东). Chin. Phys. B, 2021, 30(12): 120201.
[11] Prediction of epidemics dynamics on networks with partial differential equations: A case study for COVID-19 in China
Ru-Qi Li(李汝琦), Yu-Rong Song(宋玉蓉), and Guo-Ping Jiang(蒋国平). Chin. Phys. B, 2021, 30(12): 120202.
[12] Near-optimal control of a stochastic rumor spreading model with Holling II functional response function and imprecise parameters
Liang'an Huo(霍良安) and Xiaomin Chen(陈晓敏). Chin. Phys. B, 2021, 30(12): 120205.
[13] Analysis of the rogue waves in the blood based on the high-order NLS equations with variable coefficients
Ying Yang(杨颖), Yu-Xiao Gao(高玉晓), and Hong-Wei Yang(杨红卫). Chin. Phys. B, 2021, 30(11): 110202.
[14] Consistent Riccati expansion solvability, symmetries, and analytic solutions of a forced variable-coefficient extended Korteveg-de Vries equation in fluid dynamics of internal solitary waves
Ping Liu(刘萍), Bing Huang(黄兵), Bo Ren(任博), and Jian-Rong Yang(杨建荣). Chin. Phys. B, 2021, 30(8): 080203.
[15] Dynamics of a stochastic rumor propagation model incorporating media coverage and driven by Lévy noise
Liang-An Huo(霍良安), Ya-Fang Dong(董雅芳), and Ting-Ting Lin(林婷婷). Chin. Phys. B, 2021, 30(8): 080201.
No Suggested Reading articles found!