Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(3): 030202    DOI: 10.1088/1674-1056/abc541
GENERAL Prev   Next  

Discontinuous event-trigger scheme for global stabilization of state-dependent switching neural networks with communication delay

Yingjie Fan(樊英杰)1, Zhen Wang(王震)2,†, Jianwei Xia(夏建伟)3, and Hao Shen(沈浩)4
1 College of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao 266590, China; 2 College of Mathematics and Systems Science, Shandong University of Science and Technology, Qingdao 266590, China; 3 School of Mathematical Science, Liaocheng University, Liaocheng 252059, China; 4 College of Electrical and Information Engineering, Anhui University of Technology, Ma'anshan 243032, China
Abstract  This paper is concerned with the global stabilization of state-dependent switching neural networks (SDSNNs) via discontinuous event-triggered control with network-induced communication delay. Aiming at decreasing triggering times, a discontinuous event-trigger scheme is utilized to determine whether the sampling information is required to be sent out or not. Meanwhile, under the effect of communication delay, the trigger condition and SDSNNs are transformed into two tractable models by designing a fictitious delay function. Then, using the Lyapunov-Krasovskii stability theory, some inequality estimation techniques, and extended reciprocally convex combination method, two sufficient criteria are established for ensuring the global stabilization of the resulting closed-loop SDSNNs, respectively. A unified framework is derived that has the ability to handle the simultaneous existence of the communication delay, the properties of discontinuous event-trigger scheme, as well as feedback controller design. Additionally, the developed results demonstrate a quantitative relationship among the event trigger parameter, communication delay, and triggering times. Finally, two numerical examples are presented to illustrate the usefulness of the developed stabilization scheme.
Keywords:  global stabilization      state-dependent switching neural networks      discontinuous event-trigger scheme      communication delay  
Received:  13 August 2020      Revised:  10 October 2020      Accepted manuscript online:  28 October 2020
PACS:  02.30.Yy (Control theory)  
  07.05.Mh (Neural networks, fuzzy logic, artificial intelligence)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 62003194, 61973199, 61573008, and 61973200).
Corresponding Authors:  Corresponding author. E-mail: wangzhen_qd@126.com   

Cite this article: 

Yingjie Fan(樊英杰), Zhen Wang(王震), Jianwei Xia(夏建伟), and Hao Shen(沈浩) Discontinuous event-trigger scheme for global stabilization of state-dependent switching neural networks with communication delay 2021 Chin. Phys. B 30 030202

1 Guo Z Y, Liu L L and Wang J 2019 IEEE Trans. Neural Netw. Learn. Syst. 30 2052
2 Nie X B, Zheng W X and Cao J D2015 Neural Netw. 71 227
3 Wang G, Shen Y and Yin Q 2013 Chin. Phys. B 22 050504
4 Chen C, Ding Z X, Li S and Wang L Chin. Phys. B 29 143
5 Wu Y B, Gao Y X and Li W X 2020 Neurocomputing 384 325
6 Yang X S, Cao J D and Liang J L 2017 IEEE Trans. Neural Netw. Learn. Syst. 28 1878
7 Mathiyalagan K, Anbuvithya R, Sakthivel R, Park J and Prakash P 2016 Neural Netw. 74 85
8 Gao J, Zhu P Y, Alsaedi A, Alsaadi F E and Hayat T 2016 Neural Netw. 86 1
9 Fan Y J, Huang X, Li Y X, Xia J W and Chen G R 2019 IEEE Trans. Syst. Man Cybern. Syst. 49 2254
10 Cao Y Y, Cao Y T, Guo Z Y and Wen S P 2020 Neural Netw. 123 70
11 Sakthivel R, Anbuvithya R, Mathiyalagan K and Prakash P 2015 Neurocomputing 168 1111
12 Li R X, Gao X B and Cao J D IEEE Trans. Neural Netw. Learn. Syst. 31 3168
13 Wang L M, Shen Y and Zhang G D2017 IEEE Trans. Neural Netw. Learn. Syst. 28 2648
14 Liu H J, Wang Z D, Shen B and Dong H 2020 IEEE Trans. Cybern. 50 440
15 Sheng Y, Huang T W, Zeng Z G and Li P IEEE Trans. Cybern. 51 579
16 Wang L M, Ge M F, Hu J H and Zhang G D 2019 Nonlin. Dyn. 95 943
17 Zhang G D and Zeng Z G 2020 IEEE Trans. Neural Netw. Learn. Syst. 31 700
18 Wang L M, He H B, Zeng Z G and Ge M F IEEE Trans. Cybern. 60 4658
19 Xi Y G, Yu Y G, Zhang S and Hai X D 2018 Chin. Phys. B 27 010202
20 Zhou Y F, Zhang H and Zeng Z G IEEE Trans. Syst. Man Cybern. Syst. 51 1954
21 Hu B, Guan Z H, Yu X H and Luo Q M 2018 IEEE Trans. Fuzzy Syst. 26 3069
22 Qiu X F, Zhang Y X and Li K Z 2019 Chin. Phys. B 28 050501
23 Wu Z G, Shi P, Su H Y and Chu J 2014 IEEE Trans. Cybern. 44 2635
24 Liu J Y, Liu Y, Guo Y Q and Gui W H IEEE Trans. Cybern. 50 3928
25 Fu J J, Wen G H, Yu W W, Huang T W and Cao J D 2018 IEEE Trans. Circuits Syst. I, Reg. Papers. 65 4363
26 Chen G L, Sun J and Xia J W IEEE Trans. Neural Netw. Learn. Syst. 31 1489
27 Guo Z Y, Gong S Q, Wen S P and Huang T W 2019 IEEE Trans. Cybern. 49 3268
28 Wu Z G, Xu Y, Pan Y J, Su H S and Tang Y 2018 IEEE Trans. Circuits Syst. I, Reg. Papers 65 2232
29 Cao Y T, Wang S B, Guo Z Y, Huang T W and Wen S P 2019 Neural Netw. 119 178
30 Yue D, Tian E G and Han Q L 2013 IEEE Trans. Autom. Control 58 475
31 Chen X, Yin L Y, Liu Y T and Liu H 2019 Chin. Phys. B 28 090701
32 Wen G H, Chen M Z Q and Yu X H2016 IEEE Trans. Circuits Syst. II Exp. Briefs. 63 304
33 Wen S P, Zeng Z G, Chen M Z Q and Huang T W 2017 IEEE Trans. Neural Netw. Learn. Syst. 28 2334
34 Zhang R M, Zeng D Q, Zhong S M and Yu Y B 2017 Appl. Math. Comput. 310 57
35 Gu Z, Tian E G and Liu J L 2017 J. Frankl. Inst. 354 3854
36 Yang R N, Yu Y R, Sun J and Karimi H R 2021 Inform. Sci. 542 71
37 Selivanov A and Fridman E 2016 IEEE Trans. Autom. Control 61 3221
38 Fan Y J, Huang X, Shen H and Cao J D 2019 Neural Netw. 117 216
39 Fei Z Y, Guan C X and Gao H J 2018 IEEE Trans. Neural Netw. Learn. Syst. 29 2558
40 Yan Z L, Huang X, Fan Y J, Xia J W and Shen H IEEE Trans. Syst. Man Cybern. Syst.
41 Ding S B, Wang Z S and Zhang H G 2018 IEEE Trans. Neural Netw. Learn. Syst. 29 5045
42 Borgers D P N and Heemels W P M H 2014 IEEE Trans. Autom. Control 59 2644
43 L\"u Q G, Liao X F, Xiang T, Li H Q and Huang T W 2020 IEEE Trans. Cybern.
44 L\"u Q G, Liao X F, Li H Q and Huang T W 2020 IEEE Trans. Syst. Man Cybern. Syst.
45 Filippov A F1988 Differential Equations with Discontinuous Right-Hand Sides (Boston: Kluwer Academic)
46 Aubin J P and Cellina A1984 Differential Inclusions: Set-Valued Maps and Viability Theory(Berlin, Germany: Springer)
47 Zhang C K, He Y, Jiang L, Wu M and Wang Q G 2017 Automatica 85 481
48 Park P G, Ko J W and Jeong C K 2017 Automatica 47 235
49 Gu K Q, Kharitonov V L and Chen J2003 Stability of Time-Delay Systems (USA: Birkhuser) p. 6
50 Li Y X, Wang L and Huang X 2020 Int. J. Bifurc. Chaos 30 2050029
[1] Successive lag synchronization on dynamical networks with communication delay
Xin-Jian Zhang(张新建), Ai-Ju Wei(韦爱举), Ke-Zan Li(李科赞). Chin. Phys. B, 2016, 25(3): 038901.
[2] Containment consensus with measurement noises and time-varying communication delays
Zhou Feng (周峰), Wang Zheng-Jie (王正杰), Fan Ning-Jun (范宁军). Chin. Phys. B, 2015, 24(2): 020203.
[3] Model-based predictive controller design for a class of nonlinear networked systems with communication delays and data loss
An Bao-Ran (安宝冉), Liu Guo-Ping (刘国平). Chin. Phys. B, 2014, 23(8): 080202.
[4] Global stabilization of a Lorenz system
Li Shi-Hua (李世华), Tian Yu-Ping (田玉平). Chin. Phys. B, 2003, 12(6): 590-593.
No Suggested Reading articles found!