ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Compound-induced transparency in three-cavity coupled structure |
Hao-Ye Qin(秦昊烨)1, Yi-Heng Yin(尹贻恒)1, and Ming Ding(丁铭)1,2,† |
1 School of Instrumentation and Opto-Electronics Engineering, Beihang University, Beijing 100191, China; 2 Research Institute of Frontier Science, Beihang University, Beijing 100191, China |
|
|
Abstract We propose a three-cavity coupled cavity optomechanical (COM) structure with tunable system parameters and theoretically investigate the probe-light transmission rate. Numerical calculation of the system's spectra demonstrates distinctive compound-induced transparency (CIT) characteristics, including multiple transparency windows and sideband dips, which can be explained by a coupling between optomechanically-induced transparency (OMIT) and electromagnetically-induced transparency. The effects of optical loss (gain) in the cavity, number and topology of active cavity, tunneling ratio, and pump laser power on the CIT spectrum are evaluated and analyzed. Moreover, the optical group delay of CIT is highly controllable and fast-slow light inter-transition can be achieved. The proposed structure makes possible the advantageous tuning freedom and provides a potential platform for controlling light propagation and fast-slow light switching.
|
Received: 22 May 2020
Revised: 23 June 2020
Accepted manuscript online: 01 August 2020
|
PACS:
|
42.60.Da
|
(Resonators, cavities, amplifiers, arrays, and rings)
|
|
42.50.Gy
|
(Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61575014). |
Corresponding Authors:
†Corresponding author. E-mail: mingding@buaa.edu.cn
|
Cite this article:
Hao-Ye Qin(秦昊烨), Yi-Heng Yin(尹贻恒), and Ming Ding(丁铭) Compound-induced transparency in three-cavity coupled structure 2020 Chin. Phys. B 29 124208
|
[1] Liu Y C, Li B B and Xiao Y F Nanophotonics 6 789 DOI: 10.1515/nanoph-2016-01682017 [2] Xiong H and Ying W Appl. Phys. Rev. 5 031305 DOI: 10.1063/1.50271222018 [3] Aspelmeyer M, Kippenberg T J and Marquardt F Rev. Mod. Phys. 86 1391 DOI: 10.1103/RevModPhys.86.13912014 [4] Peng B, özdemir S K, Chen W, Nori F and Yang L Nat. Commun. 5 5082 DOI: 10.1038/ncomms60822017 [5] Agarwal G S and Huang S Phys. Rev. A 81 041803 DOI: 10.1103/PhysRevA.81.0418032010 [6] Safavi-Naeini A H, Mayer T P, Chan J, Eichenfield M, Winger M, Lin Q, Hill J T, Chang D E and Painter O Nature 4727341 https://www.nature.com/articles/nature099332011 [7] Weis S, Rivi\`ere R, Delèglise S, Gavartin E, Arcizet O, Schliesser A and Kippenberg T J Science 330 1520 DOI: 10.1126/science.11955962010 [8] Jing H, özdemir S K, Geng Z, Zhang J, Lu X Y, Peng B, Yang L and Nori F Sci. Rep. 5 9663 DOI: 10.1038/srep096632015 [9] Gu W J and Yi Z2014 Opt. Commun. 333 216 [10] Teufel J D, Li D, Allman M S, Cicak K, Sirois A J, Whittaker J D and Simmonds R W Nature 471 204 DOI: 10.1038/nature098982011 [11] Rivi\`ere R, Delèglise S, Weis S, Gavartin E, Arcizet O, Schliesser A, Kippenberg T J2011 Phys. Rev. Lett. 83 063835 [12] Jiao Y, Lu H, Qian J, Li Y and Jing H New J. Phys. 18 083034 DOI: 10.1088/1367-2630/18/8/0830342016 [13] Jing H, özdemir S K, Lu X Y, Zhang J, Yang L and Nori F Phys. Rev. Lett. 113 053604 DOI: 10.1103/PhysRevLett.113.0536042014 [14] Grudinin I S, Lee H, Painter O and Vahala K J Phys. Rev. Lett. 104 083901 DOI: 10.1103/PhysRevLett.104.0839012010 [15] Stannigel K, Komar P, Habraken S J M, Bennett S D, Lukin M D, Zoller P and Rabl P Phys. Rev. Lett. 109 013603 DOI: 10.1103/PhysRevLett.109.0136032012 [16] Kómár P, Bennett S D, Stannigel K, Habraken S J M, Rabl P, Zoller P and Lukin M D Phys. Rev. A 87 013839 DOI: 10.1103/PhysRevA.87.0138392013 [17] Hill T J, Safavi-Naeini A H, Chan J and Painter O Nat. Commun. 3 1196 DOI: 10.1038/ncomms22012012 [18] Fiore V, Yang Y, Kuzyk M C, Barbour R, Tian L and Wang H L Phys. Rev. Lett. 107 133601 DOI: 10.1103/PhysRevLett.107.1336012011 [19] Ludwig M, Safavi-Naeini A H, Painter O and Marquardt F Phys. Rev. Lett. 109 063601 DOI: 10.1103/PhysRevLett.109.0636012012 [20] Fan J and Zhu L Opt. Express 20 20790 DOI: 10.1364/OE.20.0207902012 [21] Peng B, özdemir S K, Lei F C, Monifi F, Gianfreda M, Long G L, Fan S H, Nori F, Bender C M and Yang L Nat. Phys. 10 394 DOI: 10.1038/nphys29272014 [22] Tohru O and Makoto T Phys. Rev. A 88 013813 DOI: 10.1103/PhysRevA.88.0138132013 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|