Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(12): 127401    DOI: 10.1088/1674-1056/abbbe5
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Multiple reversals of vortex ratchet effects in a superconducting strip with inclined dynamic pinning landscape

An He(何安)1,2 and Cun Xue(薛存)3,
1 College of Science, Chang'an University, Xi'an 710064, China; 2 School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China; 3 School of Mechanics, Civil Engineering and Architecture, Northwestern Polytechnical University, Xi'an 710072, China
Abstract  Using time-dependent Ginzburg-Landau formalism, we investigate the multiple reversals of ratchet effects in an unpatterned superconducting strip by the tilted dynamic pinning potential. In the case of collinear sliding potential and Lorentz force, vortices are always confined in the channels induced by sliding potential. However, due to the inclination angle of sliding pinning potential with respect to the Lorentz force, vortices could be driven out of the channels, and unexpected results with multiple reversals of vortex rectifications are observed. The mechanism of multiple reversals of vortex rectifications is explored by analyzing different vortex motion scenarios with increasing ac current amplitudes. The multiple reversals of transverse and longitudinal ratchet effects can be highly controlled by ac amplitude and dynamic pinning velocity. What's more, at certain large current the ratchet effect reaches strongest within a wide range of pinning sliding velocity.
Keywords:  multiple reversal      ratchet effect      dynamic pinning potential      Lorentz force  
Received:  04 May 2020      Revised:  11 September 2020      Accepted manuscript online:  28 September 2020
PACS:  74.25.Ha (Magnetic properties including vortex structures and related phenomena)  
  74.25.-q (Properties of superconductors)  
  74.25.Wx (Vortex pinning (includes mechanisms and flux creep))  
  74.78.Fk (Multilayers, superlattices, heterostructures)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11702034, 11972298, and 11702218), the China Postdoctoral Science Foundation (Grant No. 2019M663812), the Fundamental Research Funds for the Central Universities, China (Grant Nos. 300102129104, 3102018zy013, and 3102017jc01003), and the Young Talent Fund of University Association for Science and Technology in Shaanxi, China (Grant Nos. 20180503 and 20180501).
Corresponding Authors:  Corresponding author. E-mail: xuecun@nwpu.edu.cn   

Cite this article: 

An He(何安) and Cun Xue(薛存) Multiple reversals of vortex ratchet effects in a superconducting strip with inclined dynamic pinning landscape 2020 Chin. Phys. B 29 127401

[1] Wördenweber R and Dymashevski P Phys. Rev. B 69 184504 DOI: 10.1103/PhysRevB.69.1845042004
[2] Wördenweber R, Sankarraj J S K, Dymashevski P and Hollmann E Physica C 434 101 DOI: 10.1016/j.physc.2005.11.0142006
[3] Auslaender O M, Luan L, Straver E W J, Hoffman J E, Koshnick N C, Zeldov E, Bonn D A, Liang R, Hardy W N and Moler K A Nat. Phys. 5 35 DOI: 10.1038/nphys11272009
[4] Ma X.Y, Reichhardt C J O and Reichhardt C Phys. Rev. B 97 214521 DOI: 10.1103/PhysRevB.97.2145212018
[5] Lee C S, Jankó B, Derè nyi I and Barabási A L Nature 400 337 DOI: 10.1038/224851999
[6] Villegas J E, Savel'ev S, Nori F, Gonzalez E M, Anguita J V, Garcia R and Vicent J L Science 302 1188 DOI: 10.1126/science.10903902003
[7] Souza Silva C C, Van de Vondel J, Morelle M and Moshchalkov V V Nature 440 651 DOI: 10.1038/nature045952006
[8] Souza Silva C C, Silhanek A V, van de Vondel J, Gillijns W, Metlushko V, Ilic B and Moshchalkov V V Phys. Rev. Lett. 98 117005 DOI: 10.1103/PhysRevLett.98.1170052007
[9] Zhu B Y, Marchesoni F and Nori F Phys. Rev. Lett. 92 180602 DOI: 10.1103/PhysRevLett.92.1806022004
[10] Gillijns W, Silhanek A V, Moshchalkov V V, Reichhardt C J O and Reichhardt C Phys. Rev. Lett. 99 247002 DOI: 10.1103/PhysRevLett.99.2470022007
[11] Van de Vondel J, Gladilin V N, Silhanek A V, Gillijns W, Tempere J and Moshchalkov V V Phys. Rev. Lett. 106 137003 DOI: 10.1103/PhysRevLett.106.1370032011
[12] Lu Q M, Olson Reichhardt C J and Reichhardt C Phys. Rev. B 75 054502 DOI: 10.1103/PhysRevB.75.0545022007
[13] Berdiyorov G R, Milošević M V, Covaci L and Peeters F M Phys. Rev. Lett. 107 177008 DOI: 10.1103/PhysRevLett.107.1770082011
[14] Reichhardt C, Ray D and Olson Reichhardt C J Phys. Rev. B 91 184502 DOI: 10.1103/PhysRevB.91.1845022015
[15] Adami O A, Cerbu D, Cabosart D, Motta M, Cuppens J, OrtizWA, Moshchalkov V V, Hackens B, Delamare R, Van de Vondel J and Silhanek A V Appl. Phys. Lett. 102 052603 DOI: 10.1063/1.47906252013
[16] Ji J D, Yuan J, He G, Jin B H, Zhu B Y, Kong X D, Jia X Q, Kang L, Jin K and Wu P H Appl. Phys. Lett. 109 242601 DOI: 10.1063/1.49718352016
[17] Cerbu D, Gladilin V N, Cuppens J, Fritzsche J, Tempere J, Devreese J T, Moshchalkov V V, Silhanek A V and Van de Vondel J New J. Phys. 15 063022 DOI: 10.1088/1367-2630/15/6/0630222013
[18] Cole D, Bending S, Savel'ev S, Grigorenko A, Tamegai T and Nori F Nat. Mater. 5 305 DOI: 10.1038/nmat16082006
[19] Wang Y L, Ma X Y, Xu J, Xiao Z L, Snezhko A, Divan R, Ocola L.E, Pearson J E, Janko B and Kwok W K Nat. Nanotech. 13 560 DOI: 10.1038/s41565-018-0162-72018
[20] Jelić Ž L, Milošević M V, Van de Vondel J and Silhanek A V Sci. Rep. 5 14604 DOI: 10.1038/srep146042015
[21] Jelić Ž L, Milošević M V and Silhanek A V Sci. Rep. 6 35687 DOI: 10.1038/srep356872016
[22] He A, Xue C and Zhou Y H Appl. Phys. Lett. 115 032602 DOI: 10.1063/1.51009882019
[23] Cun Xue, He A, Milošević M V, Silhanek A V and Zhou Y -H New J. Phys. 21 113044 DOI: 10.1088/1367-2630/ab54ae2019
[24] Giaever I1965 Phys. Rev. Lett. 15 825
[25] Giaever I Phys. Rev. Lett. 16 460 DOI: 10.1103/PhysRevLett.16.4601966
[26] Solomon P R Phys. Rev. Lett. 16 50 DOI: 10.1103/PhysRevLett.16.501966
[27] Ekin J W, Serin B and Clem J R Phys. Rev. B 9 912 DOI: 10.1103/PhysRevB.9.9121974
[28] Aladyshkin A Y, Silhanek A V, Gillijns W and Moshchalkov V V Supercond. Sci. Technol. 22 053001 DOI: 10.1088/0953-2048/22/5/0530012009
[29] Kramer R B G, Silhanek A V, Gillijns W and Moshchalkov V V2011 Phys. Rev. X 1 021004
[30] Rodrigo P J, Eriksen R L, Daria V R and Glückstad J Opt. Express 10 1550 DOI: 10.1364/OE.10.0015502002
[31] Brunner M and Bechinger C Phys. Rev. Lett. 88 248302 DOI: 10.1103/PhysRevLett.88.2483022002
[32] Grier D G Nature 424 810 DOI: 10.1038/nature019352003
[33] Lee S H, Ladavac K, Polin M and Grier D G Phys. Rev. Lett. 94 110601 DOI: 10.1103/PhysRevLett.94.1106012005
[34] Libál A, Reichhardt C, Jankó B and Olson Reichhardt C J Phys. Rev. Lett. 96 188301 DOI: 10.1103/PhysRevLett.96.1883012006
[35] Bumby C W, Jiang Z, Storey J G, Pantoja A E and Badcock R A Appl. Phys. Lett. 108 122601 DOI: 10.1063/1.49436632016
[36] Kramer L and Watts-Tobin R J Phys. Rev. Lett. 40 1041 DOI: 10.1103/PhysRevLett.40.10411978
[37] Berdiyorov G, Harrabi K, Oktasendra F, Gasmi K, Mansour A I, Maneval J P and Peeters F M Phys. Rev. B 90 054506 DOI: 10.1103/PhysRevB.90.0545062014
[38] Watts-Tobin R J, Krähenbühl Y and Kramer L J. Low Temp. Phys. 42 459 DOI: 10.1007/BF001174271981
[39] Berdiyorov G R, Milošević M V and Peeters F M Phys. Rev. B 79 184506 DOI: 10.1103/PhysRevB.79.1845062009
[40] Berdiyorov G R, Milošević M V, Latimer M L, Xiao Z L, Kwok W K and Peeters F M Phys. Rev. Lett. 109 057004 DOI: 10.1103/PhysRevLett.109.0570042012
[41] Lombardo J, Jelić Ž L, Baumans X D A, Scheerder J E, Nacenta J P, Moshchalkov V V, Van de Vondel J, Kramer R B G, Milošević M V and Silhanek A V Nanoscale 10 1987 DOI: 10.1039/C7NR08571K2018
[42] Adami O A, Jelić Ž L, Xue C, Abdel-Hafiez M, Hackens B, Moshchalkov V V, Milošević M V, Van de Vondel J and Silhanek A V Phys. Rev. B 92 134506 DOI: 10.1103/PhysRevB.92.1345062015
[43] Kramer R B G, Ataklti G W, Moshchalkov V V and Silhanek A V Phys. Rev. B 81 144508 DOI: 10.1103/PhysRevB.81.1445082010
[44] Beenakker C W J, Baireuther P, Herasymenko Y, Adagideli I, Lin Wang and Akhmerov A R Phys. Rev. Lett. 122 146803 DOI: 10.1103/PhysRevLett.122.1468032019
[45] Wang D, et al. Science 362 333 DOI: 10.1126/science.aao17972018
[46] Kong L, et al. Nat. Phys. 15 1181 DOI: 10.1038/s41567-019-0630-52019
[47] Kong L and Ding H 2020 Acta Phys. Sin. 69 110301 (in Chinese) DOI: 10.7498/aps.69.20200717
[48] Ma X, Reichhardt C J O and Reichhardt C Phys. Rev. B 101 024514 DOI: 10.1103/PhysRevB.101.0245142020
[1] Mechanism of controlling turbulent channel flow with the effect of spanwise Lorentz force distribution
Yang Han(韩洋), Hui Zhang(张辉), Bao-Chun Fan(范宝春), Jian Li(李健), Dai-Wen Jiang(江代文), Zi-Jie Zhao(赵子杰). Chin. Phys. B, 2017, 26(8): 084704.
[2] Lorentz force electrical impedance tomography using pulse compression technique
Zhi-shen Sun(孙直申), Guo-qiang Liu(刘国强), Hui Xia(夏慧). Chin. Phys. B, 2017, 26(12): 124302.
[3] Electro–magnetic control of shear flow over a cylinder for drag reduction and lift enhancement
Zhang Hui (张辉), Fan Bao-Chun (范宝春), Chen Zhi-Hua (陈志华), Chen Shuai (陈帅), Li Hong-Zhi (李鸿志). Chin. Phys. B, 2013, 22(10): 104701.
[4] Detecting magnetic field direction by a micro beam operating in different vibration modes
Chen Jie(陈洁), Qin Ming(秦明), and Huang Qing-An(黄庆安) . Chin. Phys. B, 2011, 20(9): 097101.
[5] Open loop control of vortex-induced vibration of a circular cylinder
Chen Zhi-Hua(陈志华), Fan Bao-Chun(范宝春), Zhou Ben-Mou(周本谋), and Li Hong-Zhi(李鸿志). Chin. Phys. B, 2007, 16(4): 1077-1083.
No Suggested Reading articles found!