Special Issue:
TOPICAL REVIEW — Soft matter and biological physics
|
TOPICAL REVIEW—Soft matter and biological physics |
Prev
|
|
|
Dominant phase-advanced driving analysis of self-sustained oscillations in biological networks |
Zhi-gang Zheng(郑志刚)1,2, Yu Qian(钱郁)3 |
1 Institute of Systems Science, Huaqiao University, Xiamen 361021, China;
2 College of Information Science and Engineering, Huaqiao University, Xiamen 361021, China;
3 Nonlinear Research Institute, Baoji University of Arts and Sciences, Baoji 721007, China |
|
|
Abstract Oscillatory behaviors can be ubiquitously observed in various systems. Biological rhythms are significant in governing living activities of all units. The emergence of biological rhythms is the consequence of large numbers of units. In this paper we discuss several important examples of sustained oscillations in biological media, where the unit composed in the system does not possess the oscillation behavior. The dominant phase-advanced driving method is applied to study the skeletons and oscillatory organizing motifs in excitable networks and gene regulatory networks.
|
Received: 09 September 2017
Revised: 30 October 2017
Accepted manuscript online:
|
PACS:
|
89.75.Kd
|
(Patterns)
|
|
05.65.+b
|
(Self-organized systems)
|
|
89.75.Fb
|
(Structures and organization in complex systems)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11475022 and 11675001) and the Scientific Research Funds of Huaqiao University, China (Grant No. 15BS401). |
Corresponding Authors:
Zhi-gang Zheng, Yu Qian
E-mail: zgzheng@hqu.edu.cn;qianyu0272@163.com
|
Cite this article:
Zhi-gang Zheng(郑志刚), Yu Qian(钱郁) Dominant phase-advanced driving analysis of self-sustained oscillations in biological networks 2018 Chin. Phys. B 27 018901
|
[1] |
Glass L and Mackey M C 1988 From Clocks to Chaos: The Rhythms of Life (Princeton: Princeton University Press)
|
[2] |
Goldbeter A 1996 Biochemical Oscillations and Cellular Rhythms (Cambridge: Cambridge University Press)
|
[3] |
Ott E 2002 Chaos in Dynamical Systems (Cambridge: Cambridge University Press)
|
[4] |
Glass L 2001 Nature 410 277
|
[5] |
Elowitz M B and Leibler S 2000 Nature 403 335
|
[6] |
Selverston A I and Moulins M 1985 Ann. Rev. Physiol. 47 29
|
[7] |
Buzsaki G and Draguhn A 2004 Nature 304 1926
|
[8] |
Vogels T P, Rajan K and Abbott L F 2005 Ann. Rev. Neurosci. 28 357
|
[9] |
Zheng Z G 2004 Collective Behaviors and Spatiotemporal Dynamics in Coupled Nonlinear Systems (Beijing: Higher Education Press) (in Chinese)
|
[10] |
Watts D J and Strogatz S H 1998 Nature 393 440
|
[11] |
Barabási A L and Albert R 1999 Science 286 509
|
[12] |
Albert R and Barabási 2002 Rev. Mod. Phys. 74 47
|
[13] |
Fang J Q, Wang X F, Zheng Z G, Li X, Di Z R and Bi Q 2007 Prog. Phys. 27 361 (in Chinese)
|
[14] |
Boccaletti S, Latora V, Moreno Y, Chavez M and Hwang D U 2006 Phys. Rep. 424 175
|
[15] |
Arenas A, Díaz-Guilera A, Kurths J, Moreno Y and Zhou C S 2008 Phys. Rep. 469 93
|
[16] |
Newman M 2010 Networks: An Introduction (London: Oxford University Press)
|
[17] |
Hasty J, McMillen D, Isaacs F and Collins J J 2001 Nat. Rev. Genet. 2 268
|
[18] |
Novak B and Tyson J J 2008 Nat. Rev. Mol. Cell Biol. 9 981
|
[19] |
Goldbeter A 2002 Nature 420 238
|
[20] |
Elowitz M B and Leibler S 2000 Nature 403 335
|
[21] |
Ferrell Jr J E, Tsai T Y C and Yang Q 2011 Cell 144 874
|
[22] |
Gardner T S, Cantor C R and Collins J J 2000 Nature 403 339
|
[23] |
Ozbudak E M, Thattai M, Lim H N, Shraiman B I and van Oudenaarden A 2004 Nature 427 737
|
[24] |
Tsai T Y C, Choi Y S, Ma W, Pomerening J R, Tang C and Ferrell J E 2008 Science 321 126
|
[25] |
Decroly O and Goldbeter A 1982 Proc. Natl. Acad. Sci. USA 79 6917
|
[26] |
Huang X H, Zheng Z G, Hu G, Wu S and Rasch M J 2015 New J. Phys. 17 035006
|
[27] |
Zhang F F and Zheng Z G 2012 J. Univ. Shanghai Sci. & Tech. 34 138 (in Chinese)
|
[28] |
Chen L and Aihara K 1995 Neur. Net. 8 915
|
[29] |
Hutcheon B and Yarom Y 2000 Trend. Neur. 23 216
|
[30] |
Herz A V M, Gollisch T, Machens C K and Jaeger D 2006 Science 314 80
|
[31] |
Mandelblat-Cerf Y, Novick I and Vaadia E 2011 PloS ONE 6 e21626
|
[32] |
Li N, Daie K, Svoboda K and Druckmann S 2016 Nature 532 459
|
[33] |
Burke J F, Zaghloul K A, Jacobs J, et al. 2013 J. Neuro. 33 292
|
[34] |
Qian Y, Huang X D, Hu G and Liao X H 2010 Phys. Rev. E 81 036101
|
[35] |
Qian Y, Liao X H, Huang X D, Mi Y Y, Zhang L S and Hu G 2010 Phys. Rev. E 82 026107
|
[36] |
Liao X H, Xia Q Z, Qian Y, Zhang L S, Hu G and Mi Y Y 2011 Phys. Rev. E 83 056204
|
[37] |
Qian Y 2014 Phys. Rev. E 90 032807
|
[38] |
Liao X H, Qian Y, Mi Y Y, Xia Q Z, Huang X Q and Hu G 2011 Front. Phys. 6 124
|
[39] |
Ye W M, Zhang Z Y, Lv B B, Di Z R and Hu G 2012 Chin. Phys. B 21 060203
|
[40] |
Liao X H 2011 Self-sustained Oscillations in Excitable Complex Networks (Ph. D. Dissertation) (Beijing: Beijing Normal University) (in Chinese)
|
[41] |
Mi Y Y, Zhang L S, Huang X D, Qian Y, Hu G and Liao X H 2011 Europhys. Lett. 95 58001
|
[42] |
Mi Y Y, Liao X H, Huang X H, Zhang L S, Gu W F, Hu G and Wu S 2013 Proc. Natl. Acad. Sci. USA 110 E4931
|
[43] |
Zhang Z Y, Ye W M, Qian Y, Zheng Z G, Huang X H and Hu G 2012 PLoS ONE 7 e39355
|
[44] |
Zhang Z Y, Li Z Y, Hu G and Zheng Z G 2014 Europhys. Lett. 105 18003
|
[45] |
Zhang Z Y, Huang X H, Zheng Z G and Hu G 2014 Sci. Sin. 44 1319 (in Chinese)
|
[46] |
Courtemanche M, Glass L and Keener J P 1993 Phys. Rev. Lett. 70 2182
|
[47] |
Jahnke W and Winfree A T 1991 Int. J. Bif. Chaos 1 445
|
[48] |
Qian Y, Cui X H and Zheng Z G 2017 Sci. Rep. 7 5746
|
[49] |
Zhang L S, Gu W F, Hu G and Mi Y Y 2014 Chin. Phys. B 23 108902
|
[50] |
Zhang L S, Liao X H, Mi Y Y, Qian Y and Hu G 2014 Chin. Phys. B 23 78906
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|