Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(1): 018901    DOI: 10.1088/1674-1056/27/1/018901
Special Issue: TOPICAL REVIEW — Soft matter and biological physics
TOPICAL REVIEW—Soft matter and biological physics Prev  

Dominant phase-advanced driving analysis of self-sustained oscillations in biological networks

Zhi-gang Zheng(郑志刚)1,2, Yu Qian(钱郁)3
1 Institute of Systems Science, Huaqiao University, Xiamen 361021, China;
2 College of Information Science and Engineering, Huaqiao University, Xiamen 361021, China;
3 Nonlinear Research Institute, Baoji University of Arts and Sciences, Baoji 721007, China

Oscillatory behaviors can be ubiquitously observed in various systems. Biological rhythms are significant in governing living activities of all units. The emergence of biological rhythms is the consequence of large numbers of units. In this paper we discuss several important examples of sustained oscillations in biological media, where the unit composed in the system does not possess the oscillation behavior. The dominant phase-advanced driving method is applied to study the skeletons and oscillatory organizing motifs in excitable networks and gene regulatory networks.

Keywords:  self-sustained oscillation      complex networks      gene networks      dominant phase-advanced driving approach  
Received:  09 September 2017      Revised:  30 October 2017      Accepted manuscript online: 
PACS:  89.75.Kd (Patterns)  
  05.65.+b (Self-organized systems)  
  89.75.Fb (Structures and organization in complex systems)  

Project supported by the National Natural Science Foundation of China (Grant Nos. 11475022 and 11675001) and the Scientific Research Funds of Huaqiao University, China (Grant No. 15BS401).

Corresponding Authors:  Zhi-gang Zheng, Yu Qian     E-mail:;

Cite this article: 

Zhi-gang Zheng(郑志刚), Yu Qian(钱郁) Dominant phase-advanced driving analysis of self-sustained oscillations in biological networks 2018 Chin. Phys. B 27 018901

[1] Glass L and Mackey M C 1988 From Clocks to Chaos: The Rhythms of Life (Princeton: Princeton University Press)
[2] Goldbeter A 1996 Biochemical Oscillations and Cellular Rhythms (Cambridge: Cambridge University Press)
[3] Ott E 2002 Chaos in Dynamical Systems (Cambridge: Cambridge University Press)
[4] Glass L 2001 Nature 410 277
[5] Elowitz M B and Leibler S 2000 Nature 403 335
[6] Selverston A I and Moulins M 1985 Ann. Rev. Physiol. 47 29
[7] Buzsaki G and Draguhn A 2004 Nature 304 1926
[8] Vogels T P, Rajan K and Abbott L F 2005 Ann. Rev. Neurosci. 28 357
[9] Zheng Z G 2004 Collective Behaviors and Spatiotemporal Dynamics in Coupled Nonlinear Systems (Beijing: Higher Education Press) (in Chinese)
[10] Watts D J and Strogatz S H 1998 Nature 393 440
[11] Barabási A L and Albert R 1999 Science 286 509
[12] Albert R and Barabási 2002 Rev. Mod. Phys. 74 47
[13] Fang J Q, Wang X F, Zheng Z G, Li X, Di Z R and Bi Q 2007 Prog. Phys. 27 361 (in Chinese)
[14] Boccaletti S, Latora V, Moreno Y, Chavez M and Hwang D U 2006 Phys. Rep. 424 175
[15] Arenas A, Díaz-Guilera A, Kurths J, Moreno Y and Zhou C S 2008 Phys. Rep. 469 93
[16] Newman M 2010 Networks: An Introduction (London: Oxford University Press)
[17] Hasty J, McMillen D, Isaacs F and Collins J J 2001 Nat. Rev. Genet. 2 268
[18] Novak B and Tyson J J 2008 Nat. Rev. Mol. Cell Biol. 9 981
[19] Goldbeter A 2002 Nature 420 238
[20] Elowitz M B and Leibler S 2000 Nature 403 335
[21] Ferrell Jr J E, Tsai T Y C and Yang Q 2011 Cell 144 874
[22] Gardner T S, Cantor C R and Collins J J 2000 Nature 403 339
[23] Ozbudak E M, Thattai M, Lim H N, Shraiman B I and van Oudenaarden A 2004 Nature 427 737
[24] Tsai T Y C, Choi Y S, Ma W, Pomerening J R, Tang C and Ferrell J E 2008 Science 321 126
[25] Decroly O and Goldbeter A 1982 Proc. Natl. Acad. Sci. USA 79 6917
[26] Huang X H, Zheng Z G, Hu G, Wu S and Rasch M J 2015 New J. Phys. 17 035006
[27] Zhang F F and Zheng Z G 2012 J. Univ. Shanghai Sci. & Tech. 34 138 (in Chinese)
[28] Chen L and Aihara K 1995 Neur. Net. 8 915
[29] Hutcheon B and Yarom Y 2000 Trend. Neur. 23 216
[30] Herz A V M, Gollisch T, Machens C K and Jaeger D 2006 Science 314 80
[31] Mandelblat-Cerf Y, Novick I and Vaadia E 2011 PloS ONE 6 e21626
[32] Li N, Daie K, Svoboda K and Druckmann S 2016 Nature 532 459
[33] Burke J F, Zaghloul K A, Jacobs J, et al. 2013 J. Neuro. 33 292
[34] Qian Y, Huang X D, Hu G and Liao X H 2010 Phys. Rev. E 81 036101
[35] Qian Y, Liao X H, Huang X D, Mi Y Y, Zhang L S and Hu G 2010 Phys. Rev. E 82 026107
[36] Liao X H, Xia Q Z, Qian Y, Zhang L S, Hu G and Mi Y Y 2011 Phys. Rev. E 83 056204
[37] Qian Y 2014 Phys. Rev. E 90 032807
[38] Liao X H, Qian Y, Mi Y Y, Xia Q Z, Huang X Q and Hu G 2011 Front. Phys. 6 124
[39] Ye W M, Zhang Z Y, Lv B B, Di Z R and Hu G 2012 Chin. Phys. B 21 060203
[40] Liao X H 2011 Self-sustained Oscillations in Excitable Complex Networks (Ph. D. Dissertation) (Beijing: Beijing Normal University) (in Chinese)
[41] Mi Y Y, Zhang L S, Huang X D, Qian Y, Hu G and Liao X H 2011 Europhys. Lett. 95 58001
[42] Mi Y Y, Liao X H, Huang X H, Zhang L S, Gu W F, Hu G and Wu S 2013 Proc. Natl. Acad. Sci. USA 110 E4931
[43] Zhang Z Y, Ye W M, Qian Y, Zheng Z G, Huang X H and Hu G 2012 PLoS ONE 7 e39355
[44] Zhang Z Y, Li Z Y, Hu G and Zheng Z G 2014 Europhys. Lett. 105 18003
[45] Zhang Z Y, Huang X H, Zheng Z G and Hu G 2014 Sci. Sin. 44 1319 (in Chinese)
[46] Courtemanche M, Glass L and Keener J P 1993 Phys. Rev. Lett. 70 2182
[47] Jahnke W and Winfree A T 1991 Int. J. Bif. Chaos 1 445
[48] Qian Y, Cui X H and Zheng Z G 2017 Sci. Rep. 7 5746
[49] Zhang L S, Gu W F, Hu G and Mi Y Y 2014 Chin. Phys. B 23 108902
[50] Zhang L S, Liao X H, Mi Y Y, Qian Y and Hu G 2014 Chin. Phys. B 23 78906
[1] Analysis of cut vertex in the control of complex networks
Jie Zhou(周洁), Cheng Yuan(袁诚), Zu-Yu Qian(钱祖燏), Bing-Hong Wang(汪秉宏), and Sen Nie(聂森). Chin. Phys. B, 2023, 32(2): 028902.
[2] Vertex centrality of complex networks based on joint nonnegative matrix factorization and graph embedding
Pengli Lu(卢鹏丽) and Wei Chen(陈玮). Chin. Phys. B, 2023, 32(1): 018903.
[3] Improved functional-weight approach to oscillatory patterns in excitable networks
Tao Li(李涛), Lin Yan(严霖), and Zhigang Zheng(郑志刚). Chin. Phys. B, 2022, 31(9): 090502.
[4] Characteristics of vapor based on complex networks in China
Ai-Xia Feng(冯爱霞), Qi-Guang Wang(王启光), Shi-Xuan Zhang(张世轩), Takeshi Enomoto(榎本刚), Zhi-Qiang Gong(龚志强), Ying-Ying Hu(胡莹莹), and Guo-Lin Feng(封国林). Chin. Phys. B, 2022, 31(4): 049201.
[5] Robust H state estimation for a class of complex networks with dynamic event-triggered scheme against hybrid attacks
Yahan Deng(邓雅瀚), Zhongkai Mo(莫中凯), and Hongqian Lu(陆宏谦). Chin. Phys. B, 2022, 31(2): 020503.
[6] Finite-time synchronization of uncertain fractional-order multi-weighted complex networks with external disturbances via adaptive quantized control
Hongwei Zhang(张红伟), Ran Cheng(程然), and Dawei Ding(丁大为). Chin. Phys. B, 2022, 31(10): 100504.
[7] LCH: A local clustering H-index centrality measure for identifying and ranking influential nodes in complex networks
Gui-Qiong Xu(徐桂琼), Lei Meng(孟蕾), Deng-Qin Tu(涂登琴), and Ping-Le Yang(杨平乐). Chin. Phys. B, 2021, 30(8): 088901.
[8] Complex network perspective on modelling chaotic systems via machine learning
Tong-Feng Weng(翁同峰), Xin-Xin Cao(曹欣欣), and Hui-Jie Yang(杨会杰). Chin. Phys. B, 2021, 30(6): 060506.
[9] Exploring individuals' effective preventive measures against epidemics through reinforcement learning
Ya-Peng Cui(崔亚鹏), Shun-Jiang Ni (倪顺江), and Shi-Fei Shen(申世飞). Chin. Phys. B, 2021, 30(4): 048901.
[10] Influential nodes identification in complex networks based on global and local information
Yuan-Zhi Yang(杨远志), Min Hu(胡敏), Tai-Yu Huang(黄泰愚). Chin. Phys. B, 2020, 29(8): 088903.
[11] Identifying influential spreaders in complex networks based on entropy weight method and gravity law
Xiao-Li Yan(闫小丽), Ya-Peng Cui(崔亚鹏), Shun-Jiang Ni(倪顺江). Chin. Phys. B, 2020, 29(4): 048902.
[12] Modeling and analysis of the ocean dynamic with Gaussian complex network
Xin Sun(孙鑫), Yongbo Yu(于勇波), Yuting Yang(杨玉婷), Junyu Dong(董军宇)†, Christian B\"ohm, and Xueen Chen(陈学恩). Chin. Phys. B, 2020, 29(10): 108901.
[13] Pyramid scheme model for consumption rebate frauds
Yong Shi(石勇), Bo Li(李博), Wen Long(龙文). Chin. Phys. B, 2019, 28(7): 078901.
[14] Theoretical analyses of stock correlations affected by subprime crisis and total assets: Network properties and corresponding physical mechanisms
Shi-Zhao Zhu(朱世钊), Yu-Qing Wang(王玉青), Bing-Hong Wang(汪秉宏). Chin. Phys. B, 2019, 28(10): 108901.
[15] Coordinated chaos control of urban expressway based on synchronization of complex networks
Ming-bao Pang(庞明宝), Yu-man Huang(黄玉满). Chin. Phys. B, 2018, 27(11): 118902.
No Suggested Reading articles found!