Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(11): 114301    DOI: 10.1088/1674-1056/ab4d3f
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Dynamics of an ultrasound contrast agent microbubble near spherical boundary in ultrasound field

Ji-Wen Hu(胡继文)1,2, Lian-Mei Wang(王练妹)1, Sheng-You Qian(钱盛友)2, Wen-Yi Liu(刘文一)1, Ya-Tao Liu(刘亚涛)1, Wei-Rui Lei(雷卫瑞)1
1 School of Mathematics and Physics, University of South China, Hengyang 421001, China;
2 School of Physics and Electronics, Hunan Normal University, Changsha 410081, China
Abstract  The goal of this article is to establish the conditions of excitation where one has to deal with ultrasound contrast agent (UCA) microbubbles pulsating near biological tissues with spherical boundary in ultrasound field for targeted drug delivery and cavitation-enhanced thrombolysis, etc., and contributes to understanding of mechanisms at play in such an interaction. A modified model is presented for describing microbubble dynamics near a spherical boundary (including convex boundary and concave boundary) with an arbitrary-sized aperture angle. The novelty of the model is such that an oscillating microbubble is influenced by an additional pressure produced by the sound reflection from the boundary wall. It is found that the amplitude of microbubble oscillation is positively correlated to the curve radius of the wall and negatively correlated to the aperture angle of the wall and the sound reflection coefficient. Moreover, the natural frequency of the microbubble oscillation for such a compliable wall increases with the wall compliance, but decreases with the reduction of the wall size, indicating distinct increase of the natural frequency compared to a common rigid wall. The proposed model may allow obtaining accurate information on the radiation force and signals that may be used to advantage in related as drug delivery and contrast agent imaging.
Keywords:  ultrasound contrast agent (UCA) microbubble      spherical boundary      ultrasound      natural frequency  
Received:  27 August 2019      Revised:  29 September 2019      Accepted manuscript online: 
PACS:  43.25.+y (Nonlinear acoustics)  
  43.80.+p (Bioacoustics)  
  02.90.+p (Other topics in mathematical methods in physics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11774088 and 11474090), the Hunan-Provincial Natural Science Foundation of China (Grant No. 13JJ3076), and the Science Research Program of Education Department of Hunan Province of China (Grant No. 14A127).
Corresponding Authors:  Sheng-You Qian     E-mail:  syqian@foxmail.com

Cite this article: 

Ji-Wen Hu(胡继文), Lian-Mei Wang(王练妹), Sheng-You Qian(钱盛友), Wen-Yi Liu(刘文一), Ya-Tao Liu(刘亚涛), Wei-Rui Lei(雷卫瑞) Dynamics of an ultrasound contrast agent microbubble near spherical boundary in ultrasound field 2019 Chin. Phys. B 28 114301

[35] Stieger S M, Caskey C F, Adamson R H, Qin S, Curry F R, Wisner E R and Ferrara K W 2007 Radiology 243 112
[1] Qin S, Caskey C F and Ferrara K W 2009 Phys. Med. Biol. 54 R27
[36] Qin S and Ferrara K W 2007 Ultrasound Med. Biol. 33 1140
[2] Yildiz Y O, Eckersley R J, Senior R, Lim A K, Cosgrove D and Tang M X 2015 Ultrasound Med. Biol. 41 1938
[37] Martynov S, Stride E and Saffari N 2009 J. Acoust. Soc. Am. 126 2963
[3] Teng X D, Guo X S, Tu J and Zhang D 2016 Chin. Phys. B 25 124314
[4] Delalande A, Leduc C, Midoux P, Postema M and Pichon C 2015 Ultrasound Med. Biol. 41 1913
[5] Sheeran P S, Matsuura N, Borden M A, Williams R, Matsunaga T O, Burns P N and Dayton P A 2016 IEEE Trans. Ultrason Ferroelectr. Freq. Control. 64 252
[6] Tang M, Loo J F, Wang Y, Zhang X, Kwok H C, Hui M, Leung C C, Kong S K, Wang G and Ho H P 2017 Lab Chip 17 474
[7] Zhong P, Zhou Y and Zhu S 2001 Ultrasound Med. Biol. 27 119
[8] Garbin V, Cojoc D, Ferrari E, Di Fabrizio E, Overvelde M L J, van der Meer S M, de Jong N, Lohse D and Versluis M 2007 Appl. Phys. Lett. 90 114103
[9] Wong Z Z, Kripfgans O D, Qamar A, Fowlkes J B and Bull J L 2011 Soft Matter 7 4009
[10] Zhao Z F, Zhang W J, Niu L L, Meng L and Zheng H R 2018 Acta Phys. Sin. 67 194320(in Chinese)
[11] Doinikov A A, Aired L and Bouakaz A 2011 Phys. Med. Biol. 56 6951
[12] Miao H, Gracewski S M and Dalecki D 2008 J. Acoust. Soc. Am. 124 2374
[13] Cai C L, Yu J, Tu J, Guo X S, Huang P T and Zhang D 2018 Chin. Phys. B 27 084302
[14] Wang Q, Manmi K and Calvisi M L 2015 Phys. Fluids 27 022104
[15] Wang L, Tu J, Guo X S, Xu D and Zhang D 2014 Chin. Phys. B 23 124302
[16] Diez-Silva M, Dao M, Han J, Lim C T and Suresh S 2010 MRS Bull. 35 382
[17] Park D, Song G, Jo Y, Won J and Son T 2016 Plos One 11 e0157707
[18] Epah J, Pálfi K, Dienst F L, Malacarne P F and Bremer R 2018 Theranostics 8 2117
[19] Kallmes D F and Fujiwara N H 2016 Am. J. Neuroradiol 2 3 1580
[20] Cines D B, Lebedeva T, Nagaswami C, Hayes V, Massefski W, Litvinov R I, Rauova L, Lowery T J and Weisel J W 2014 Blood 123 1596
[21] Johnsen E and Colonius T 2008 J. Acoust. Soc. Am. 124 2011
[22] Curtiss G A, Leppinen D M, Wang Q X and Blake J R 2013 J. Fluid. Mech. 730 245
[23] Vogel A, Schweiger P, Frieser A, Asiyo M N and Birngruber R 1990 J. Quant. Electron. 26 2240
[24] Sutton J T, Ivancevich N M, Perrin S R, Vela D C, Holl and C K 1994 Phys. Med. Biol. 39 813
[25] Tomita Y and Shima A 1986 J. Fluid. Mech. 169 535
[26] TomitaY, Robinson P B, Tong R P and Blake J R 2002 J. Fluid. Mech. 466 259
[27] Wu S J, Zuo Z G, Ren Z B and Liu S H 2018 Proc. 10th International Symposium on Cavitation, May 14-16, 2018, Maryland, USA p. 308
[28] Obreschkow D, Kobel P, Dorsaz N, de Bosset A, Nicollier C and Farhat M 2006 Phys. Rev. Lett. 97 094502
[29] Hu J W, Qian S Y, Sun J N, Lv Y B and Hu P 2015 Chin. Phys. B 24 094301
[30] Qin S and Ferrara K W 2006 Phys. Med. Biol. 51 5065
[31] Stride E and Saffari N 2003 Proc. Inst. Mech. Eng. H. 217 429
[32] Morse P M and Ingard K U 1968 Theoretical Acoustics (New York:McGraw Hill)
[33] Hasheminejad S M 2001 Acustica 87 443
[34] van der Meer S M, Dollet B, Voormolen M M, Chin C T, Bouakaz A, de Jong N, Versluis M and Lohse D 2007 J. Acoust. Soc. Am. 121 648
[35] Stieger S M, Caskey C F, Adamson R H, Qin S, Curry F R, Wisner E R and Ferrara K W 2007 Radiology 243 112
[36] Qin S and Ferrara K W 2007 Ultrasound Med. Biol. 33 1140
[37] Martynov S, Stride E and Saffari N 2009 J. Acoust. Soc. Am. 126 2963
[1] Wideband frequency-dependent dielectric properties of rat tissues exposed to low-intensity focused ultrasound in the microwave frequency range
Xue Wang(王雪), Shi-Xie Jiang, Lin Huang(黄林), Zi-Hui Chi(迟子惠), Dan Wu(吴丹), and Hua-Bei Jiang. Chin. Phys. B, 2023, 32(3): 034305.
[2] Quantitative ultrasound brain imaging with multiscale deconvolutional waveform inversion
Yu-Bing Li(李玉冰), Jian Wang(王建), Chang Su(苏畅), Wei-Jun Lin(林伟军), Xiu-Ming Wang(王秀明), and Yi Luo(骆毅). Chin. Phys. B, 2023, 32(1): 014303.
[3] Increasing the ·OH radical concentration synergistically with plasma electrolysis and ultrasound in aqueous DMSO solution
Chao Li(李超), De-Long Xu(徐德龙), Wen-Quan Xie(谢文泉), Xian-Hui Zhang(张先徽), and Si-Ze Yang(杨思泽). Chin. Phys. B, 2022, 31(4): 048706.
[4] Nonlinear oscillation characteristics of magnetic microbubbles under acoustic and magnetic fields
Lixia Zhao(赵丽霞), Huimin Shi(史慧敏), Isaac Bello, Jing Hu(胡静), Chenghui Wang(王成会), and Runyang Mo(莫润阳). Chin. Phys. B, 2022, 31(3): 034302.
[5] Quantum phase transitions in CePdAl probed by ultrasonic and thermoelectric measurements
Hengcan Zhao(赵恒灿), Meng Lyu(吕孟), Jiahao Zhang(张佳浩), Shuai Zhang(张帅), and Peijie Sun(孙培杰). Chin. Phys. B, 2022, 31(11): 117103.
[6] Numerical simulations of partial elements excitation for hemispherical high-intensity focused ultrasound phased transducer
Yanqiu Zhang(张艳秋), Hao Zhang(张浩), Tianyu Sun(孙天宇), Ting Pan(潘婷), Peiguo Wang(王佩国), and Xiqi Jian(菅喜岐). Chin. Phys. B, 2021, 30(7): 078704.
[7] Identification of denatured and normal biological tissues based on compressed sensing and refined composite multi-scale fuzzy entropy during high intensity focused ultrasound treatment
Shang-Qu Yan(颜上取), Han Zhang(张含), Bei Liu(刘备), Hao Tang(汤昊), and Sheng-You Qian(钱盛友). Chin. Phys. B, 2021, 30(2): 028704.
[8] Analysis of natural frequency for imaging interface in liquid lens
Na Xie(谢娜). Chin. Phys. B, 2021, 30(10): 104702.
[9] Influence of dynamic tissue properties on temperature elevation and lesions during HIFU scanning therapy: Numerical simulation
Xiao Zou(邹孝), Hu Dong(董胡), Sheng-You Qian(钱盛友). Chin. Phys. B, 2020, 29(3): 034305.
[10] Enhancing convolutional neural network scheme forrheumatoid arthritis grading with limited clinical data
Jian Tang(汤键), Zhibin Jin(金志斌), Xue Zhou(周雪), Weijing Zhang(张玮婧), Min Wu(吴敏), Qinghong Shen(沈庆宏), Qian Cheng(程茜), Xueding Wang(王学鼎), Jie Yuan(袁杰). Chin. Phys. B, 2019, 28(3): 038701.
[11] Interaction between encapsulated microbubbles: A finite element modelling study
Chen-Liang Cai(蔡晨亮), Jie Yu(于洁), Juan Tu(屠娟), Xia-Sheng Guo(郭霞生), Pin-Tong Huang(黄品同), Dong Zhang(章东). Chin. Phys. B, 2018, 27(8): 084302.
[12] Treatable focal region modulated by double excitation signal superimposition to realize platform temperature distribution during transcranial brain tumor therapy with high-intensity focused ultrasound
Shi-Hui Chang(常诗卉), Rui Cao(曹睿), Ya-Bin Zhang(张亚斌), Pei-Guo Wang(王佩国), Shi-Jing Wu(吴世敬), Yu-Han Qian(钱宇晗), Xi-Qi Jian(菅喜岐). Chin. Phys. B, 2018, 27(7): 078701.
[13] Influence of mode conversions in the skull on transcranial focused ultrasound and temperature fields utilizing the wave field separation method: A numerical study
Xiang-Da Wang(王祥达), Wei-Jun Lin(林伟军), Chang Su(苏畅), Xiu-Ming Wang(王秀明). Chin. Phys. B, 2018, 27(2): 024302.
[14] Adaptive optimization on ultrasonic transmission tomography-based temperature image for biomedical treatment
Yun-Hao Zhu(朱昀浩), Jie Yuan(袁杰), Stephen Z Pinter, Oliver D Kripfgans, Qian Cheng(程茜), Xue-Ding Wang(王学鼎), Chao Tao(陶超), Xiao-Jun Liu(刘晓峻), Guan Xu(徐冠), Paul L Carson. Chin. Phys. B, 2017, 26(6): 064301.
[15] Impact of cavitation on lesion formation induced by high intensity focused ultrasound
Pengfei Fan(范鹏飞), Jie Yu(于洁), Xin Yang(杨鑫), Juan Tu(屠娟), Xiasheng Guo(郭霞生), Pintong Huang(黄品同), Dong Zhang(章东). Chin. Phys. B, 2017, 26(5): 054301.
No Suggested Reading articles found!