Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(10): 100201    DOI: 10.1088/1674-1056/ab3af3
GENERAL   Next  

Compact finite difference schemes for the backward fractional Feynman-Kac equation with fractional substantial derivative

Jiahui Hu(胡嘉卉)1,2, Jungang Wang(王俊刚)1, Yufeng Nie(聂玉峰)1, Yanwei Luo(罗艳伟)2
1 Department of Applied Mathematics, Northwestern Polytechnical University, Xi'an 710129, China;
2 College of Science, Henan University of Technology, Zhengzhou 450001, China
Abstract  The fractional Feynman-Kac equations describe the distributions of functionals of non-Brownian motion, or anomalous diffusion, including two types called the forward and backward fractional Feynman-Kac equations, where the non-local time-space coupled fractional substantial derivative is involved. This paper focuses on the more widely used backward version. Based on the newly proposed approximation operators for fractional substantial derivative, we establish compact finite difference schemes for the backward fractional Feynman-Kac equation. The proposed difference schemes have the q-th (q=1,2,3,4) order accuracy in temporal direction and fourth order accuracy in spatial direction, respectively. The numerical stability and convergence in the maximum norm are proved for the first order time discretization scheme by the discrete energy method, where an inner product in complex space is introduced. Finally, extensive numerical experiments are carried out to verify the availability and superiority of the algorithms. Also, simulations of the backward fractional Feynman-Kac equation with Dirac delta function as the initial condition are performed to further confirm the effectiveness of the proposed methods.
Keywords:  backward fractional Feynman-Kac equation      fractional substantial derivative      compact finite difference scheme      numerical inversion of Laplace transforms  
Received:  15 June 2019      Revised:  23 July 2019      Accepted manuscript online: 
PACS:  02.60.-x (Numerical approximation and analysis)  
  02.60.Cb (Numerical simulation; solution of equations)  
  02.70.Bf (Finite-difference methods)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11471262) and Henan University of Technology High-level Talents Fund, China (Grant No. 2018BS039).
Corresponding Authors:  Yufeng Nie     E-mail:  yfnie@nwpu.edu.cn

Cite this article: 

Jiahui Hu(胡嘉卉), Jungang Wang(王俊刚), Yufeng Nie(聂玉峰), Yanwei Luo(罗艳伟) Compact finite difference schemes for the backward fractional Feynman-Kac equation with fractional substantial derivative 2019 Chin. Phys. B 28 100201

[30] Li X and Xu C 2009 SIAM J. Numer. Anal. 47 2108
[1] Comtet A, Desbois J and Texier C 2005 J. Phys. A: Math. Gen. 38 R341
[31] Deng W, Chen M and Barkai E 2015 J. Sci. Comput. 62 718
[2] Foltin G, Oerding K, Rácz Z, Workman R and Zia R 1994 Phys. Rev. E 50 R639
[32] Chen M and Deng W 2013 ESAIM Math. Model. Numer. Anal. 49 373
[3] Hummer G and Szabo A 2001 Proc. Natl. Acad. Sci. USA 98 3658
[4] Baule A and Friedrich R 2006 Phys. Lett. A 350 167
[33] Sun Z 2009 The Method of Order Reduction and Its Application to the Numerical Solutions of Partial Differential Equations (Beijing: Science Press) p. 126
[5] Majumdar S and Bray A 2002 Phys. Rev. E 65 051112
[34] Liao H and Sun Z 2010 Numer. Methods Partial Differential Equations 26 37
[35] Chen M and Deng W 2014 Commun. Comput. Phys. 16 516
[6] Yor M 2001 Exponential Functionals of Brownian Motion and Related Processes (Springer Science & Business Media) pp. 182-203
[7] Kac M 1949 Trans. Am. Math. Soc. 65 1
[36] Abate J 1995 ORSA J. Comput. 7 36
[8] Rueangkham N and Modchang C 2016 Chin. Phys. B 25 048201
[37] Barkai E 2001 Phys. Rev. E 63 046118
[9] Hu W and Shao Y 2014 Acta Phys. Sin. 63 238202 (in Chinese)
[38] Barkai E, Metzler R and Klafter J 2000 Phys. Rev. E 61 132
[10] Abdelwahed H, El-Shewy E and Mahmoud A 2017 Chin. Phys. Lett. 34 035202
[39] Metzler R and Klafter J 2000 Phys. Rep. 339 1
[11] Agmon N 1984 J. Chem. Phys. 81 3644
[40] Metzler R, Barkai E and Klafter J 1999 Phys. Rev. Lett. 82 3653
[12] Carmi S, Turgeman L and Barkai E 2010 J. Stat. Phys. 141 1071
[13] Carmi S and Barkai E 2011 Phys. Rev. E 84 061104
[14] Turgeman L, Carmi S and Barkai E 2009 Phys. Rev. Lett. 103 190201
[15] Friedrich R, Jenko F, Baule A and Eule S 2006 Phys. Rev. Lett. 96 230601
[16] Chen M, Deng W and Wu Y 2013 Appl. Numer. Math. 70 22
[17] Chen S, Liu F, Zhuang P and Anh V 2009 Appl. Math. Model. 33 256
[18] Gao G and Sun Z 2011 J. Comput. Phys. 230 586
[19] Meerschaert M and Tadjeran C 2006 Appl. Numer. Math. 56 80
[20] Sun Z and Wu X 2006 Appl. Numer. Math. 56 193
[21] Deng W 2008 SIAM J. Numer. Anal. 47 204
[22] Ervin V and Roop J 2006 Numer. Methods Partial Differential Equations 22 558
[23] Jiang Y and Ma J 2011 J. Comput. Appl. Math. 235 3285
[24] Liu Y, Li H, Gao W, He S and Fang Z 2014 Sci. World J. 2014 141467
[25] Liu Y, Fang Z, Li H and He S 2014 Appl. Math. Comput. 243 703
[26] Liu F, Zhuang P, Turner I, Burrage K and Anh V 2014 Appl. Math. Model. 38 3871
[27] Feng L, Zhuang P, Liu F and Turner I 2015 Appl. Math. Comput. 257 52
[28] Zhao J, Li H, Fang Z and Liu Y 2019 Mathematics 7 600
[29] Li C, Zeng F and Liu F 2012 Fract. Calc. Appl. Anal. 15 383
[30] Li X and Xu C 2009 SIAM J. Numer. Anal. 47 2108
[31] Deng W, Chen M and Barkai E 2015 J. Sci. Comput. 62 718
[32] Chen M and Deng W 2013 ESAIM Math. Model. Numer. Anal. 49 373
[33] Sun Z 2009 The Method of Order Reduction and Its Application to the Numerical Solutions of Partial Differential Equations (Beijing: Science Press) p. 126
[34] Liao H and Sun Z 2010 Numer. Methods Partial Differential Equations 26 37
[35] Chen M and Deng W 2014 Commun. Comput. Phys. 16 516
[36] Abate J 1995 ORSA J. Comput. 7 36
[37] Barkai E 2001 Phys. Rev. E 63 046118
[38] Barkai E, Metzler R and Klafter J 2000 Phys. Rev. E 61 132
[39] Metzler R and Klafter J 2000 Phys. Rep. 339 1
[40] Metzler R, Barkai E and Klafter J 1999 Phys. Rev. Lett. 82 3653
[1] Quantitative measurement of the charge carrier concentration using dielectric force microscopy
Junqi Lai(赖君奇), Bowen Chen(陈博文), Zhiwei Xing(邢志伟), Xuefei Li(李雪飞), Shulong Lu(陆书龙), Qi Chen(陈琪), and Liwei Chen(陈立桅). Chin. Phys. B, 2023, 32(3): 037202.
[2] Adaptive multi-step piecewise interpolation reproducing kernel method for solving the nonlinear time-fractional partial differential equation arising from financial economics
Ming-Jing Du(杜明婧), Bao-Jun Sun(孙宝军), and Ge Kai(凯歌). Chin. Phys. B, 2023, 32(3): 030202.
[3] Influence of magnetic field on power deposition in high magnetic field helicon experiment
Yan Zhou(周岩), Peiyu Ji(季佩宇), Maoyang Li(李茂洋), Lanjian Zhuge(诸葛兰剑), and Xuemei Wu(吴雪梅). Chin. Phys. B, 2023, 32(2): 025205.
[4] Gauss quadrature based finite temperature Lanczos method
Jian Li(李健) and Hai-Qing Lin(林海青). Chin. Phys. B, 2022, 31(5): 050203.
[5] Superconductivity in octagraphene
Jun Li(李军) and Dao-Xin Yao(姚道新). Chin. Phys. B, 2022, 31(1): 017403.
[6] Effect of symmetrical frequency chirp on pair production
Kun Wang(王焜), Xuehua Hu(胡学华), Sayipjamal Dulat, and Bai-Song Xie(谢柏松). Chin. Phys. B, 2021, 30(6): 060204.
[7] A local refinement purely meshless scheme for time fractional nonlinear Schrödinger equation in irregular geometry region
Tao Jiang(蒋涛), Rong-Rong Jiang(蒋戎戎), Jin-Jing Huang(黄金晶), Jiu Ding(丁玖), and Jin-Lian Ren(任金莲). Chin. Phys. B, 2021, 30(2): 020202.
[8] Effects of imperfect pulses on dynamical decoupling using quantum trajectory method
Lin-Ze He(何林泽), Man-Chao Zhang(张满超), Chun-Wang Wu(吴春旺), Yi Xie(谢艺), Wei Wu(吴伟), Ping-Xing Chen(陈平形). Chin. Phys. B, 2018, 27(12): 120303.
[9] Heteroclinic cycles in a new class of four-dimensional discontinuous piecewise affine systems
Wenjing Xu(徐文静), Wei Xu(徐伟), Li Cai(蔡力). Chin. Phys. B, 2018, 27(11): 110201.
[10] Improved reproducing kernel particle method for piezoelectric materials
Ji-Chao Ma(马吉超), Gao-Feng Wei(魏高峰), Dan-Dan Liu(刘丹丹). Chin. Phys. B, 2018, 27(1): 010201.
[11] Effects of rainy weather on traffic accidents of a freeway using cellular automata model
Ming-Bao Pang(庞明宝), Bo-Ning Ren(任泊宁). Chin. Phys. B, 2017, 26(10): 108901.
[12] Topology optimization using the improved element-free Galerkin method for elasticity
Yi Wu(吴意), Yong-Qi Ma(马永其), Wei Feng(冯伟), Yu-Min Cheng(程玉民). Chin. Phys. B, 2017, 26(8): 080203.
[13] Conformal structure-preserving method for damped nonlinear Schrödinger equation
Hao Fu(傅浩), Wei-En Zhou(周炜恩), Xu Qian(钱旭), Song-He Song(宋松和), Li-Ying Zhang(张利英). Chin. Phys. B, 2016, 25(11): 110201.
[14] Statistical second-order two-scale analysis and computation for heat conduction problem with radiation boundary condition in porous materials
Zhi-Qiang Yang(杨志强), Shi-Wei Liu(刘世伟), Yi Sun(孙毅). Chin. Phys. B, 2016, 25(9): 090202.
[15] Finite-difference time-domain modeling of curved material interfaces by using boundary condition equations method
Jia Lu(卢佳), Huaichun Zhou(周怀春). Chin. Phys. B, 2016, 25(9): 090203.
No Suggested Reading articles found!