Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(7): 075202    DOI: 10.1088/1674-1056/28/7/075202
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Characteristics and underlying physics of ionic wind in dc corona discharge under different polarities

Tongkai Zhang(张桐恺)2, Yu Zhang(张宇)3, Qizheng Ji(季启政)3, Ben Li(李犇)1, Jiting Ouyang(欧阳吉庭)2
1 National Key Laboratory of Mechatronic Engineering and Control, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China;
2 School of Physics, Beijing Institute of Technology, Beijing 100081, China;
3 Beijing Orient Institute of Measurement and Test, Beijing 100094, China
Abstract  

During a dc corona discharge, the ions' momentum will be transferred to the surrounding neutral molecules, inducing an ionic wind. The characteristics of corona discharge and the induced ionic wind are investigated experimentally and numerically under different polarities using a needle-to-ring electrode configuration. The morphology and mechanism of corona discharge, as well as the characteristics and mechanism of the ionic wind, are different when the needle serves as cathode or anode. Under the different polarities of the applied voltage, the ionic wind velocity has a linear relation with the overvoltage. The ionic wind is stronger but has a smaller active region for positive corona compared to that for negative corona under a similar condition. The involved physics are analyzed by theoretical deduction as well as simulation using a fluid model. The ionic wind of negative corona is mainly affected by negative ions. The discharge channel has a dispersed feature due to the dispersed field, and therefore the ionic wind has a larger active area. The ionic wind of positive corona is mainly affected by positive ions. The discharge develops in streamer mode, leading to a stronger ionic wind but a lower active area.

Keywords:  corona discharge      ionic wind      electrode polarity  
Received:  27 February 2019      Revised:  17 April 2019      Accepted manuscript online: 
PACS:  52.80.Hc (Glow; corona)  
  52.65.-y (Plasma simulation)  
  52.40.Kh (Plasma sheaths)  
Fund: 

Project supported by China Postdoctoral Science Foundation (Grant No. 3020036721801) and Electrostatic Research Foundation of Liu Shanghe Academicians Experts Workstation, Beijing Orient Institute of Measurement and Test, China (Grant No. BOIMTLSHJD20181005).

Corresponding Authors:  Ben Li, Jiting Ouyang     E-mail:  liben0316@163.com;jtouyang@bit.edu.cn

Cite this article: 

Tongkai Zhang(张桐恺), Yu Zhang(张宇), Qizheng Ji(季启政), Ben Li(李犇), Jiting Ouyang(欧阳吉庭) Characteristics and underlying physics of ionic wind in dc corona discharge under different polarities 2019 Chin. Phys. B 28 075202

[1] Raizer Y P 1991 Gas Discharge Physics (Berlin Heidelberg: SpringerVerlag) p. 324
[2] Karakas E, Begum A and Laroussi M 2008 IEEE Trans. Plasma Sci. 36 950
[3] Go D B, Garimella S V, Fisher T S and Mongia R K 2007 J. Appl. Phys. 102 053302
[4] Yue Y G, Hou J P, Ai Z L, Yang L J and Zhang Q G 2006 Plasma Sci. Technol. 8 697
[5] Mestiri R, Hadaji R and Ben N S 2010 Phys. Plasmas 17 083503
[6] Zhang Y, Liu L J, Li B and Ouyang J T 2016 Plasma Sci. Technol. 18 634
[7] Xu H F, He Y O, Strobel K L, Gilmore C K, Kelly S P, Hennick C C, Sebastian T, Woolston M R, Perreault D J and Barret S R H 2018 Nature 563 532
[8] Colas D F, Ferret A, Pai D Z, Lacoste D A and Laux C O 2010 J. Appl. Phys. 108 103306
[9] Kiousis K N, Moronis A X and Fruh W G 2014 Plasma Sci. Technol. 16 363
[10] Qiu W, Xia L, Yang L, Zhang Q, Xiao L and Chen L 2011 Plasma Sci. Technol. 13 693
[11] Moreau E and Touchard G 2008 J. Electrostat. 66 39
[12] Moreau E, Benard N, Lan-Sun-Luk J D and Chabriat J P 2013 J. Phys. D: Appl. Phys. 46 475204
[13] Léger L, Moreau E, Artana G and Touchard G 2001 J. Electrostat. 51- 52 300
[14] Kawamoto H and Umezu S 2005 J. Phys. D: Appl. Phys. 38 887
[15] Kawamoto H, Yasuda H and Umezu S 2006 J. Electrostat. 64 400
[16] Cagnoni D, Agostini F, Christen T, Parolini N, Stevanović I and De Falco C 2013 J. Appl. Phys. 114 233301
[17] Li Q, Li H F, Sun X R, Zhang W Y and Wang H 2010 High Vol. Engin. 36 2739
[18] Matéo-Vélez J C, Degond P, Rogier F, Séraudie A and Thivet F 2008 J. Phys. D: Appl. Phys. 41 035205
[19] Liu Y, Cui X, Lu T B, Li X B, Wang Z G, Xiang Y and Wang X B 2015 Chin. Phys. B 24 065201
[20] Qian M Y, Yang C Y, Chen X C, Ni G S, Liu S and Wang D Z 2015 Chin. Phys. Lett. 32 075202
[21] Drews A M, Cademartiri L, Whitesides G M and Bishop K J 2013 J. Appl. Phys. 114 143302
[22] Dau V T, Dinh T X, Terebessy T and Bui T T 2016 Sens. Actuators A 244 146
[23] Chen S, Nobelen J C P Y and Nijdam S 2017 Plasma Source Sci. Technol. 26 095005
[24] Chen S, van den Berg R G W and Nijdam S 2018 Plasma Source Sci. Technol. 27 055021
[25] Zhang Y, Qin Y, Zhao G and Ouyang J T 2016 J. Phys. D: Appl. Phys. 49 245206
[26] Callebaut T, Kochetov I, Akishev Y, Napartovich A and Leys C 2004 Plasma Sources Sci. Technol. 13 245
[27] Qiu W, Xia L Z, Tan X Y and Yang L J 2010 IEEE Trans. Plasma Sci. 38 2848
[28] Wu F F, Liao R J, Yang L J, Liu X H, Wang K and Zhou Z 2013 Acta Phys. Sin. 62 348 (in Chinese)
[29] Durán-Olivencia F J, Pontiga F and Castellanos A 2014 J. Phys. D: Appl. Phys. 47 415203
[30] Dordizadeh P, Adamiak K and Castle G P 2015 J. Phys. D: Appl. Phys. 48 415203
[31] Béquin P, Castor K and Scholten J 2003 Eur. Phys. J. Appl. Phys. 22 41
[32] Zhang Y, Liu L J, Chen Y and Ouyang J T 2015 J. Electrostat. 74 15
[1] Review on ionization and quenching mechanisms of Trichel pulse
Anbang Sun(孙安邦), Xing Zhang(张幸), Yulin Guo(郭雨林), Yanliang He(何彦良), and Guanjun Zhang(张冠军). Chin. Phys. B, 2021, 30(5): 055207.
[2] Numerical simulation on ionic wind in circular channels
Gui-Wen Zhang(张桂文), Jue-Kuan Yang(杨决宽), and Xiao-Hui Lin(林晓辉). Chin. Phys. B, 2021, 30(1): 014701.
[3] Enhancement of corona discharge induced wind generation with carbon nanotube and titanium dioxide decoration
Jianchun Ye(叶建春), Jun Li(李俊), Xiaohong Chen(陈晓红), Sumei Huang(黄素梅), Wei Ou-Yang(欧阳威). Chin. Phys. B, 2019, 28(9): 095202.
[4] Comparison between AlN and Al2O3 ceramics applied to barrier dielectric of plasma actuator
Dong-Liang Bian(卞栋梁), Yun Wu(吴云), Min Jia(贾敏), Chang-Bai Long(龙昌柏), Sheng-Bo Jiao(焦胜博). Chin. Phys. B, 2017, 26(8): 084703.
[5] Using a Mach–Zehnder interferometer to deduce nitrogen density mapping
F. Boudaoud, M. Lemerini. Chin. Phys. B, 2015, 24(7): 075205.
[6] Numerical simulation and experimental validation of direct current air corona discharge under atmospheric pressure
Liu Xing-Hua(刘兴华), He Wei(何为), Yang Fan(杨帆), Wang Hong-Yu(王虹宇), Liao Rui-Jin(廖瑞金), and Xiao Han-Guang(肖汉光) . Chin. Phys. B, 2012, 21(7): 075201.
No Suggested Reading articles found!