Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(12): 128702    DOI: 10.1088/1674-1056/27/12/128702
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

The determinant factors for map resolutions obtained using CryoEM single particle imaging method

Yihua Wang(王义华)1, Daqi Yu(余大启)1, Qi Ouyang(欧阳颀)1, Haiguang Liu(刘海广)2
1 Key Laboratory for Artificial Microstructure and Mesoscopic Physics, Institute of Condensed Matter Physics, School of Physics, Center for Quantitative Biology School of Physics, The Peking-Tsinghua Center for Life Sciences at School of Physics, Peking University, Beijing 100084, China;
2 Complex Systems Division, Beijing Computational Science Research Centre, Beijing 100193, China
Abstract  

The CryoEM single particle structure determination method has recently received broad attention in the field of structural biology. The structures can be resolved to near-atomic resolutions after model reconstructions from a large number of CryoEM images measuring molecules in different orientations. However, the determining factors for reconstructed map resolution need to be further explored. Here, we provide a theoretical framework in conjunction with numerical simulations to gauge the influence of several key factors to CryoEM map resolutions. If the projection image quality allows orientation assignment, then the number of measured projection images and the quality of each measurement (quantified using average signal-to-noise ratio) can be combined to a single factor, which is dominant to the resolution of reconstructed maps. Furthermore, the intrinsic thermal motion of molecules has significant effects on the resolution. These effects can be quantitatively summarized with an analytical formula that provides a theoretical guideline on structure resolutions for given experimental measurements.

Keywords:  Cryo-EM      resolution      noise      conformation heterogeneity  
Received:  12 July 2018      Revised:  08 October 2018      Accepted manuscript online: 
PACS:  87.64.Ee (Electron microscopy)  
  87.57.cf (Spatial resolution)  
  87.57.cm (Noise)  
  87.15.hp (Conformational changes)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11774011, 11434001, U1530401, and U1430237).

Corresponding Authors:  Haiguang Liu     E-mail:  hgliu@csrc.ac.cn

Cite this article: 

Yihua Wang(王义华), Daqi Yu(余大启), Qi Ouyang(欧阳颀), Haiguang Liu(刘海广) The determinant factors for map resolutions obtained using CryoEM single particle imaging method 2018 Chin. Phys. B 27 128702

[1] Bai X C, McMullan G and Scheres. S H W 2012 Nat. Methods 9 853
[2] Faruqi A R and McMullan G 2011 Quarterly Rev. Biophys. 44 357
[3] Tang G, Peng L, Baldwin P R, Mann D S, Jiang W, Rees I and Ludtke S J 2007 J. Struct. Biol. 157 38
[4] Scheres S H 2012 J. Struct. Biol. 180 519
[5] Grigorieff N 2016 Methods Enzymol. 579 191
[6] da Fonseca P C A and Morris E P 2015 Nat. Commun. 6 7573
[7] Passmore L A and Russo C J 2016 Methods in Enzymology 579 51
[8] Bernecky C, Herzog F, Baumeister W, Plitzko J M and Cramer P 2016 Nature 529 551
[9] Li X, Mooney P, Zheng S, Booth C R, Braunfeld M B, Gubbens S, Agard D A and Cheng Y 2013 Nat. Methods 10 584
[10] Zheng S Q, Palovcak E, Armache J P, Verba K A, Cheng Y and Agard D A 2017 Nat. Methods 14 331
[11] Yu X, Jin L and Zhou Z H 2008 Nature 453 415
[12] Chen J Z, Settembre E C, Aoki S T, Zhang X, Bellamy A R, Dormitzer P R, Harrison S C and Grigorieff N 2009 Proc. Natl. Acad. Sci. USA 106 10644
[13] Zhang X, Jin L, Fang Q, Hui W H and Zhou Z H 2010 Cell 141 472
[14] Cao E, Liao M, Cheng Y and Julius D 2013 Nature 504 113
[15] Bernstein F C, Koetzle T F, Williams G J, Meyer E F Jr, Brice M D, Rodgers J R, Kennard O, Shimanouchi T and Tasumi M 1977 J. Mol. Biol. 112 535
[16] Berman H M, Westbrook J, Feng Z, Gillil, G, Bhat T N, Weissig H, Shindyalov I N and Bourne P E 2000 Nucleic Acids Res. 28 235
[17] Newman R, Chagoyen M, Carazo J M and Henrick K 2002 Trends BioChem. Sci. 27 11
[18] Henrick K, Newman R, Tagari M and Chagoyen M 2003 J. Struct. Biol. 144 228
[19] Rose P W, Prlic A, Bi C, Bluhm W F, Christie C H, Dutta S, Green R K, Goodsell D S, Westbrook J D, Woo J, Young J, Zardecki C, Berman
H M, Bourne P E and Burley S K 2015 Nucleic Acids Res. 43 D345 [20] Nogales E 2016 Nat. Methods 13 24
[21] Lawson C L, Patwardhan A, Baker M L, Hryc C, Garcia E S, Hudson B P, Lagerstedt I, Ludtke S J, Pintilie G, Sala R, Westbrook J D, Berman H M, Kleywegt G J and Chiu W 2016 Nucleic Acids Res. 44 D396
[22] Morris A L, MacArthur M W, Hutchinson E G and Thornton J M 1992 Proteins: Structure, Function, and Genetics 12 345
[23] Karplus P A and Diederichs K 2012 Science 336 1030
[24] Heel M v and Harauz G 1986 Optik 73 146
[25] Bottcher B, Wynne S A and Crowther R A ¨ 1997 Nature 386 88
[26] Rosenthal P B and Henderson R 2003 J. Mol. Biol. 333 721
[27] Scheres S H and Chen S 2012 Nat. Methods 9 853
[28] Kucukelbir A, Sigworth F J and Tagare H D 2014 Nat. Methods 11 63
[29] Henderson R 1995 Quarterly Rev. BioPhys. 28 171
[30] Penczek P A 2010 Methods Enzymol. 482 73
[31] Liao H Y and Frank J 2010 Structure 18 768
[32] Bartesaghi A, Merk A, Banerjee S, Matthies D, Wu X W, Milne J L S and Subramaniam S 2015 Science 348 1147
[33] Merk A, Bartesaghi A, Banerjee S, Falconieri V, Rao P, Davis M I, Pragani R, Boxer M B, Earl L A, Milne J L and Subramaniam S 2016 Cell 165 1698
[34] Bartolucci C, Lamba D, Grazulis S, Manakova E and Heumann H 2005 J. Mol. Biol. 354 940
[35] Shaikh T R, Gao H, Baxter W T, Asturias F J, Boisset N, Leith A and Frank J 2008 Nat. Protocols 3 1941
[36] Yershova A, Jain S, Lavalle S M and Mitchell J C 2010 Int. J. Rob. Res. 29 801
[37] Bakan A, Dutta A, Mao W, Liu Y, Chennubhotla C, Lezon T R and Bahar I 2014 Bioinformatics 30 2681
[38] Dashti A, Schwander P, Langlois R, Fung R, Li W, Hosseinizadeh A, Liao H Y, Pallesen J, Sharma G, Stupina V A, Simon A E, Dinman J D, Frank J and Ourmazd A 2014 Proc. Natl. Acad. Sci. USA 111 17492
[39] Chen S, Wu J, Lu Y, Ma Y B, Lee B H, Yu Z, Ouyang Q, Finley D J, Kirschner M W and Mao Y 2016 Proc. Natl. Acad. Sci. USA 113 12991
[40] Dashti A, Ben Hail D, Mashayekhi G, Schwander P, des Georges A, Frank J and Ourmazd A 2017 BioRxiv 167080
[41] Trueblood K N, Bürgi H B, Burzlaff H, Dunitz J D, Gramaccioli C M, Schulz H H, Shmueli U and Abrahams S C 1996 Acta Crystallographica A52 770
[42] Frank J and Ourmazd A 2016 Methods 100 61
[43] Hosseinizadeh A, Mashayekhi G, Copperman J, Schwander P, Dashti A, Sepehr R, Fung R, Schmidt M, Yoon C H, Hogue B G, Williams G J, Aquila A and Ourmazd A 2017 Nat. Methods 14 877
[1] Precision measurement and suppression of low-frequency noise in a current source with double-resonance alignment magnetometers
Jintao Zheng(郑锦韬), Yang Zhang(张洋), Zaiyang Yu(鱼在洋), Zhiqiang Xiong(熊志强), Hui Luo(罗晖), and Zhiguo Wang(汪之国). Chin. Phys. B, 2023, 32(4): 040601.
[2] A probability theory for filtered ghost imaging
Zhong-Yuan Liu(刘忠源), Shao-Ying Meng(孟少英), and Xi-Hao Chen(陈希浩). Chin. Phys. B, 2023, 32(4): 044204.
[3] A cladding-pumping based power-scaled noise-like and dissipative soliton pulse fiber laser
Zhiguo Lv(吕志国), Hao Teng(滕浩), and Zhiyi Wei(魏志义). Chin. Phys. B, 2023, 32(2): 024207.
[4] Quantitative ultrasound brain imaging with multiscale deconvolutional waveform inversion
Yu-Bing Li(李玉冰), Jian Wang(王建), Chang Su(苏畅), Wei-Jun Lin(林伟军), Xiu-Ming Wang(王秀明), and Yi Luo(骆毅). Chin. Phys. B, 2023, 32(1): 014303.
[5] Inhibitory effect induced by fractional Gaussian noise in neuronal system
Zhi-Kun Li(李智坤) and Dong-Xi Li(李东喜). Chin. Phys. B, 2023, 32(1): 010203.
[6] Nonvanishing optimal noise in cellular automaton model of self-propelled particles
Guang-Le Du(杜光乐) and Fang-Fu Ye(叶方富). Chin. Phys. B, 2022, 31(8): 086401.
[7] Hyperparameter on-line learning of stochastic resonance based threshold networks
Weijin Li(李伟进), Yuhao Ren(任昱昊), and Fabing Duan(段法兵). Chin. Phys. B, 2022, 31(8): 080503.
[8] Characteristics of piecewise linear symmetric tri-stable stochastic resonance system and its application under different noises
Gang Zhang(张刚), Yu-Jie Zeng(曾玉洁), and Zhong-Jun Jiang(蒋忠均). Chin. Phys. B, 2022, 31(8): 080502.
[9] Fast prediction of aerodynamic noise induced by the flow around a cylinder based on deep neural network
Hai-Yang Meng(孟海洋), Zi-Xiang Xu(徐自翔), Jing Yang(杨京), Bin Liang(梁彬), and Jian-Chun Cheng(程建春). Chin. Phys. B, 2022, 31(6): 064305.
[10] Acoustic multipath structure in direct zone of deep water and bearing estimation of tow ship noise of towed line array
Zhi-Bin Han(韩志斌), Zhao-Hui Peng (彭朝晖), Jun Song(宋俊), Lei Meng(孟雷), Xiu-Ting Yang(杨秀庭), and Bing Su(苏冰). Chin. Phys. B, 2022, 31(5): 054301.
[11] Photon number resolvability of multi-pixel superconducting nanowire single photon detectors using a single flux quantum circuit
Hou-Rong Zhou(周后荣), Kun-Jie Cheng(程昆杰), Jie Ren(任洁), Li-Xing You(尤立星),Li-Liang Ying(应利良), Xiao-Yan Yang(杨晓燕), Hao Li(李浩), and Zhen Wang(王镇). Chin. Phys. B, 2022, 31(5): 057401.
[12] Nano-friction phenomenon of Frenkel—Kontorova model under Gaussian colored noise
Yi-Wei Li(李毅伟), Peng-Fei Xu(许鹏飞), and Yong-Ge Yang(杨勇歌). Chin. Phys. B, 2022, 31(5): 050501.
[13] Effects of colored noise on the dynamics of quantum entanglement of a one-parameter qubit—qutrit system
Odette Melachio Tiokang, Fridolin Nya Tchangnwa, Jaures Diffo Tchinda,Arthur Tsamouo Tsokeng, and Martin Tchoffo. Chin. Phys. B, 2022, 31(5): 050306.
[14] A stopping layer concept to improve the spatial resolution of gas-electron-multiplier neutron detector
Jianjin Zhou(周建晋), Jianrong Zhou(周健荣), Xiaojuan Zhou(周晓娟), Lin Zhu(朱林), Jianqing Yang(杨建清), Guian Yang(杨桂安), Yi Zhang(张毅), Baowei Ding(丁宝卫), Bitao Hu(胡碧涛), Zhijia Sun(孙志嘉), Limin Duan(段利敏), and Yuanbo Chen(陈元柏). Chin. Phys. B, 2022, 31(5): 050702.
[15] Deterministic remote state preparation of arbitrary three-qubit state through noisy cluster-GHZ channel
Zhihang Xu(许智航), Yuzhen Wei(魏玉震), Cong Jiang(江聪), and Min Jiang(姜敏). Chin. Phys. B, 2022, 31(4): 040304.
No Suggested Reading articles found!