Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(10): 103101    DOI: 10.1088/1674-1056/27/10/103101
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Laser cooling of CH molecule: Insights from ab initio study

Jie Cui(崔洁), Jian-Gang Xu(徐建刚), Jian-Xia Qi(祁建霞), Ge Dou(窦戈), Yun-Guang Zhang(张云光)
School of Science, Xi'an University of Posts and Telecommunications, Xi'an 710121, China
Abstract  

The feasibility of laser cooling a CH molecule is investigated theoretically by employing the ab initio method. The potential energy curves for the five Λ-S states and eight Ω states of CH are determined by the multi-reference configuration interaction with the Davidson corrections (MRCI+Q) level of theory. The results agree well with the available experimental data and other theoretical values. Also, the permanent dipole moments and transition dipole moments of the CH molecule are calculated at the multi-reference configuration interaction (MRCI) level. We find highly diagonally distributed Franck-Condon factors (f00=0.9950 and 0.9998) and branching ratios (R00=0.983 and 0.993) for the A2Δ→X2Π and C2Σ+→X2Π transitions. Moreover, the values of suitable radiative lifetime τ of the A2Δ and C2Σ+ states are evaluated to be 9.64×10-7 s and 2.02×10-7 s, respectively, for rapid laser cooling. A scheme for laser cooling the CH molecule is designed. In the proposed cooling scheme, three wavelengths for A2Δ→X2Π and C2Σ+→X2Π transitions are used, and the main pump lasers are λ00=430.86 nm and 313.45 nm, respectively. The feasibility of laser cooling the CH molecules is demonstrated for each of these schemes, and this study offers a theoretical basis for experimental research into preparation of cold CH molecules.

Keywords:  spectroscopic constants      transition diople moments      Franck-Condon factors      laser cooling  
Received:  21 March 2018      Revised:  25 July 2018      Accepted manuscript online: 
PACS:  31.15.A- (Ab initio calculations)  
  37.10.Mn (Slowing and cooling of molecules)  
  87.80.Cc (Optical trapping)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 61705182).

Corresponding Authors:  Yun-Guang Zhang     E-mail:  zygsr2010@163.com

Cite this article: 

Jie Cui(崔洁), Jian-Gang Xu(徐建刚), Jian-Xia Qi(祁建霞), Ge Dou(窦戈), Yun-Guang Zhang(张云光) Laser cooling of CH molecule: Insights from ab initio study 2018 Chin. Phys. B 27 103101

[1] Ospelkaus S, Ni K K, Wang D, de M H G, Neyenhuis B, QuéQner G, Julienne P S, Bohn J L, Jin D S and Ye J 2010 Science 327 853
[2] Krems R V 2008 Phys. Chem. Chem. Phys. 10 4079
[3] Baron J, Campbell W C, Demille D, Doyle J M, Gabrielse G, Gurevich Y V, Hess P W, Hutzler N R, Kirilov E, Kozyryev I, O'Leary B R, Panda C D, Parsons M F, Petrik E S, Spaun B, Vutha A C and West A D 2014 Science 343 269
[4] Demille D 2002 Phys. Rev. Lett. 88 067901
[5] Krems R V 2008 Phys. Chem. Chem. Phys. 10 4079
[6] Rosa M D D 2004 Eur. Phys. J. D 31 395
[7] Shuman E S, Barry J F and Demille D 2010 Nature 467 820
[8] Hummon M T, Yeo M, Stuhl B K, Collopy A L, Xia Y and Ye J 2013 Phys. Rev. Lett. 110 143001
[9] Zhelyazkova V, Cournol A, Wall T E, Matsushima A, Hudson J J, Hinds E A, Tarbutt M R and Sauer B E 2014 Phys. Rev. A 89 12707
[10] Hendricks R J, Holl, D A, Truppe S, Sauer B E and Tarbutt M R 2014 Front. Phys. 2 51
[11] Tarallo M G, Iwata G Z and Zelevinsky T 2016 Phys. Rev. A 93 032509
[12] Xu L, Yin Y, Wei B, Xia Y and Yin J P 2016 Phys. Rev. A 93 39
[13] Gao Y F and Gao T 2014 Phys. Rev. A 90 052506
[14] Zhang Y G, Zhang H and Dou G 2017 Acta Phys. Sin. 66 233101 (in Chinese)
[15] Lane I C 2012 Phys. Chem. Chem. Phys. 14 15078
[16] Cade P E and Huo W M 1967 J. Chem. Phys. 47 649
[17] Wan M J, Shao J X, Huang D H, Jin C G, Yu Y and Wang F H 2015 Phys. Chem. Chem. Phys. 17 26731
[18] Wells N and Lane I C 2011 Phys. Chem. Chem. Phys. 13 19018
[19] Nguyen J H V and Odom B 2011 Phys. Rev. A 83 053404
[20] Gao Y and Gao T 2015 Phys. Chem. Chem. Phys. 17 10830
[21] McKellar A and Richardson E H 1955 Astrophys. J. 122 196
[22] Chen P, Pallix J B, Chupks W A and Colson S D 1986 J. Chem. Phys. 84 527
[23] Huber K P and Herzberg G 1979 Molecular Spectra and Molecular Structure IV. Constants of Diatomic Molecules (New York:Van Nostrand Reinhold Company Inc.)
[24] Kalemos A, Mavridis A and Metropoulos A 1999 J. Chem. Phys. 111 9536
[25] Kleinschmidit M, Fleig T and Marian C M 2002 J. Mol. Spectrosc. 211 179
[26] Hettema H and Yarkony D R 1994 J. Chem. Phys. 100 8991
[27] Li Q and Zhu Z H 2006 Acta Phys. Sin. 55 102 (in Chinese)
[28] Sun H and Freed K F 2003 J. Chem. Phys. 118 8281
[29] Richards W G and Cooper D L 1981 J. Phys. B:At. Mol. Phys. 14 L131
[30] Zachwieja M 1995 J. Mol. Spectrosc. 170 285
[31] Kasdan A, Herbst E and Lineberger W C 1975 Chem. Phys. Lett. 31 78
[32] kepa R, Para A, Rytel M and Zachwieja M 1996 J. Mol. Spectrosc. 178 189
[33] Kumar A, Hsiao C C, Hung W C and Lee Y P 1998 J. Chem. Phys. 109 3824
[34] Herzberg G and Johns J W C 1969 Astrophys. J. 158 399
[35] Werner H J, Knowles P J, Lindh R, Knizia G, Manby F R and Schütz M 2010 "MOLPRO Version 2010.1, a package of ab initio programs," see http://www.molpro.net
[36] Knowles P J and Werner H J 1985 J. Chem. Phys. 82 5053
[37] Knowles P J and Werner H J 1985 Chem. Phys. Lett. 115 259
[38] Xia W, Fu M, Ma H and Bian W 2017 Chem. Phys. 485 29
[39] Werner H J and Knowles P J 1988 J. Chem. Phys. 89 5803
[40] Knowles P J and Werner H J 1988 Chem. Phys. Lett. 145 514
[41] You Y, Yang C L, Wang M S, Ma X G and Liu W W 2015 Phys. Rev. A 92 032502
[42] Laughoff S R and Davidson E R 1974 Int. J. Quantum Chem. 8 61
[43] Douglas N and Kroll N M 1974 Ann. Phys. 82 89
[44] Hess B A 1986 Phys. Rev. A 33 3742
[45] Di Rosa M D 2004 Eur. Phys. J. D-At. Mol. Opt. Plasma Phys. 31 395
[46] Le Roy R J 2015 "LEVEL 8.2:A computer program for solving the radial Schrödinger equation for bound and quasibound levels, Chemical Physics Research Report CP-668" (University of Waterloo)
[47] Herzberg G 1950 Molecular spectra and molecular structure:spectra of diatomic molecules, Vol. 1, 6 273
[48] Zhang Y G, Zhang H, Song H Y, Yu Y and Wan M J 2017 Phys. Chem. Chem. Phys. 19 24647
[49] Wan M J, Yuan D, Jin C G, Wang F H, Yang Y J, Yu Y and Shao J X 2016 J. Chem. Phys. 145 341
[50] Fu M, Cao J, Ma H and Bian W 2016 Rsc. Adv. 6 100568
[51] Fu M, Ma H, Cao J and Bian W 2016 J. Chem. Phys. 144 184302
[52] Fu M, Ma H, Cao J and Bian W 2017 J. Chem. Phys. 146 134309
[1] Spectroscopic study of B2Σ+–X1 2Π1/2 transition of electron electric dipole moment candidate PbF
Ben Chen(陈犇), Yi-Ni Chen(陈旖旎), Jia-Nuan Pan(潘佳煖), Jian-Ping Yin(印建平), and Hai-Ling Wang(汪海玲). Chin. Phys. B, 2022, 31(9): 093301.
[2] Enhanced cold mercury atom production with two-dimensional magneto-optical trap
Ye Zhang(张晔), Qi-Xin Liu(刘琪鑫), Jian-Fang Sun(孙剑芳), Zhen Xu(徐震), and Yu-Zhu Wang(王育竹). Chin. Phys. B, 2022, 31(7): 073701.
[3] Theoretical study on the transition properties of AlF
Yun-Guang Zhang(张云光), Ling-Ling Ji(吉玲玲), Ru Cai(蔡茹),Cong-Ying Zhang(张聪颖), and Jian-Gang Xu(徐建刚). Chin. Phys. B, 2022, 31(5): 053101.
[4] Simulation and experiment of the cooling effect of trapped ion by pulsed laser
Chang-Da-Ren Fang(方长达人), Yao Huang(黄垚), Hua Guan(管桦), Yuan Qian(钱源), and Ke-Lin Gao(高克林). Chin. Phys. B, 2021, 30(7): 073701.
[5] Efficient loading of ultracold sodium atoms in an optical dipole trap from a high power fiber laser
Jing Xu(徐静), Wen-Liang Liu(刘文良), Ning-Xuan Zheng(郑宁宣), Yu-Qing Li(李玉清), Ji-Zhou Wu(武寄洲), Peng Li (李鹏), Yong-Ming Fu(付永明), Jie Ma(马杰), Lian-Tuan Xiao(肖连团), and Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2021, 30(3): 033701.
[6] Ground state cooling of an optomechanical resonator with double quantum interference processes
Shuo Zhang(张硕), Tan Li(李坦), Qian-Hen Duan(段乾恒), Jian-Qi Zhang(张建奇), and Wan-Su Bao(鲍皖苏). Chin. Phys. B, 2021, 30(2): 023701.
[7] Simple and robust method for rapid cooling of 87Rb to quantum degeneracy
Chun-Hua Wei(魏春华), Shu-Hua Yan(颜树华). Chin. Phys. B, 2020, 29(6): 064208.
[8] Vibronic spectra of aluminium monochloride relevant to circumstellar molecule
Jian-Gang Xu(徐建刚), Cong-Ying Zhang(张聪颖), Yun-Guang Zhang(张云光). Chin. Phys. B, 2020, 29(3): 033102.
[9] Enhanced optical molasses cooling for Cs atoms with largely detuned cooling lasers
Di Zhang(张迪), Yu-Qing Li(李玉清), Yun-Fei Wang(王云飞), Yong-Ming Fu(付永明), Peng Li(李鹏), Wen-Liang Liu(刘文良), Ji-Zhou Wu(武寄洲), Jie Ma(马杰), Lian-Tuan Xiao(肖连团), Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2020, 29(2): 023203.
[10] Two-frequency amplification in a semiconductor tapered amplifier for cold atom experiments
Zhi-Xin Meng(孟至欣), Yu-Hang Li(李宇航), Yan-Ying Feng(冯焱颖). Chin. Phys. B, 2018, 27(9): 094201.
[11] Theoretical study of spin-forbidden cooling transitions of indium hydride using ab initio methods
Yun-Guang Zhang(张云光), Hua Zhang(张华), Ge Dou(窦戈). Chin. Phys. B, 2017, 26(9): 093101.
[12] Quantum feedback cooling of two trapped ions
Shuo Zhang(张硕), Wei Wu(吴伟), Chun-Wang Wu(吴春旺), Feng-Guang Li(李风光), Tan Li(李坦), Xiang Wang(汪翔), Wan-Su Bao(鲍皖苏). Chin. Phys. B, 2017, 26(7): 074205.
[13] Development of adjustable permanent magnet Zeeman slowers for optical lattice clocks
Xiao-Hang Zhang(张晓航), Xin-Ye Xu(徐信业). Chin. Phys. B, 2017, 26(5): 053701.
[14] BaF radical: A promising candidate for laser cooling and magneto-optical trapping
Liang Xu(许亮), Bin Wei(魏斌), Yong Xia(夏勇), Lian-Zhong Deng(邓联忠), Jian-Ping Yin(印建平). Chin. Phys. B, 2017, 26(3): 033702.
[15] Potential energy curves, transition dipole moments, and radiative lifetimes of KBe molecule
Ming-Jie Wan(万明杰), Cheng-Guo Jin(金成国), You Yu(虞游), Duo-Hui Huang(黄多辉), Ju-Xiang Shao(邵菊香). Chin. Phys. B, 2017, 26(3): 033101.
No Suggested Reading articles found!