Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(7): 074701    DOI: 10.1088/1674-1056/27/7/074701
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Active control of wall-bounded turbulence for drag reduction with piezoelectric oscillators

Jian-Xia Bai(白建侠)1,2, Nan Jiang(姜楠)1,3, Xiao-Bo Zheng(郑小波)1, Zhan-Qi Tang(唐湛琪)1, Kang-Jun Wang(王康俊)1, Xiao-Tong Cui(崔晓通)1
1 Department of Mechanics, School of Mechanical Engineering, Tianjin University, Tianjin 300350, China;
2 Deptartment of Mathematics, Tianjin University Renai College, Tianjin 301636, China;
3 Tianjin Key Laboratory of Modern Engineering Mechanics, Tianjin 300072, China
Abstract  An experimental investigation was performed for active control of coherent structure bursting in the near-wall region of the turbulent boundary layer. By means of synchronous and asynchronous vibrations with double piezoelectric vibrators, the influence of periodic vibration of the double piezoelectric vibrators on the mean velocity profile, drag reduction rate, and coherent structure bursting is analyzed at Reθ=2766. The case with 100 V/160 Hz-ASYN is superior to other conditions in the experiment and a relative drag reduction rate of 18.54% is exciting. Asynchronous vibration is more effective than synchronous vibration in drag reduction at the same voltage and frequency. In all controlled cases, coherent structures at large scales are regulated while the small-scale structures are stimulated. The fluctuating velocity increases significantly. A periodic regulating effect on the coherent structure can be seen in the ASYN control conditions at the frequency of 160 Hz.
Keywords:  turbulent boundary layer      active control      double piezoelectric vibrators  
Received:  15 February 2018      Revised:  02 April 2018      Accepted manuscript online: 
PACS:  47.85.lb (Drag reduction)  
  47.85.ld (Boundary layer control)  
  47.27.nb (Boundary layer turbulence ?)  
  47.27.De (Coherent structures)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11332006, 11732010, 11572221, and 11502066).
Corresponding Authors:  Nan Jiang     E-mail:  nanj@tju.edu.cn

Cite this article: 

Jian-Xia Bai(白建侠), Nan Jiang(姜楠), Xiao-Bo Zheng(郑小波), Zhan-Qi Tang(唐湛琪), Kang-Jun Wang(王康俊), Xiao-Tong Cui(崔晓通) Active control of wall-bounded turbulence for drag reduction with piezoelectric oscillators 2018 Chin. Phys. B 27 074701

[1] Kim H T, Kline S J and Reynolds W C 1971 J. Fluid Mech. 50 133
[2] Tang Z Q and Jiang N 2011 Chin. Phys. Lett. 28 054702
[3] Bai J X, Zheng X B and Jiang N 2016 J. Exper. Fluid. Mech. 5 1 (in Chinese)
[4] Zheng X B and Jiang N 2015 Acta Mech. Sin. 31 16
[5] Wang W, Guan X L and Jiang N 2014 Chin. Phys. B 23 104703
[6] Huang W X, Xu C X and Cui G X 2004 Acta Mech. Sin. 36 24 (in Chinese)
[7] Yang G, Xu C X and Cui G X 2010 Acta Mech. Sin. 42 818 (in Chinese)
[8] Deng B Q and Xu C X 2012 J. Fluid Mech. 710 234
[9] Luo S D, Xu C X and Cui G X 2007 Chin. J. Theor. Appl. Mech. 39 311 (in Chinese)
[10] Ge M W, Xu C X and Huang W X 2012 Chin. J. Theor. Appl. Mech. 44 653 (in Chinese)
[11] Gu Y Q, Mou J G, Dai D S, Zheng S H, Jiang L F, Wu D H, Ren Y and Liu F Q 2015 Acta Phys. Sin. 64 024701 (in Chinese)
[12] Hu H B, Du P, Huang S H and Wang Y 2013 Chin. Phys. B 22 074703
[13] Kang S and Choi H 2000 J. Fluid Mech. 12 3301
[14] Kral L D 1999 ASME Fluids Eng. Division News Letter 1
[15] Gad-El-Hak M 2000 Flow Control:Passive, Active, and Reactive Flow Management (Cambridge:University of Cambridge) p. 12
[16] Kang S and Choi H 2000 J. Fluid Mech. 12 3301
[17] Berger T W, Kim J and Lee C 2000 Phys. Fluids. 12 631
[18] Rathnasingham R 1997 System Identification and Active Control of a Turbulent Boundary Layer (Ph. D. Dissertation) (Boston:Massachusetts Institute of Technology)
[19] Kim J 2003 Phys. Fluids 15 1093
[20] Karniadakis G E and Choi K S 2003 Annu. Rev. Fluid Mech. 35 45
[21] Kasagi N, Suzuki Y and Fukagata K 2009 Annu. Rev. Fluid Mech. 41 231
[22] Grosjean C, Lee G B and Hong W 1998 Proceedings of the 11$th MEMS Workshop, 25-29 January, Heidelberg, Germany, p. 25
[23] Cattafesta L N, Garg S and Shukla D 2001 J. AIAA 8 1562
[24] Segawa T, Kawaguchi Y and Kikushima Y 2002 J. Turbulence 3 1
[25] Itoh M, Tamano S and Yokota K 2006 J. Turbulence 7 1
[26] Cattafesta L N and Sheplak M 2011 Annu. Rev. Fluid Mech. 43 247
[27] Zhang H, Zheng X B and Jiang N 2016 Chin. J. Theor. Appl. Mech. 48 536 (in Chinese)
[28] Zheng X B, Jiang N and Zhang H 2015 Chin. Phys. B 24 064702
[29] Zheng X B and Jiang N 2016 Chin. Phys. B 25 014703
[30] Farge M 1992 Ann. Rev. Fluid Mech. 24 395
[31] Camussi R and Guj G 1997 J. Fluid Mech. 348 177
[32] Jiang N and Zhang J 2005 Chin. Phys. Lett. 22 1968
[33] Jiang N, Liu W and Liu J H 2008 Sci. Chin. 51 857
[34] Liu J H, Jiang N, Wang Z D and Shu W 2005 Appl. Math. Mech. 26 456
[35] Jiang N, Wang Z D and Shu W 1997 Chin. J. Theor. Appl. Mech. 29 406 (in Chinese)
[1] Effects of single synthetic jet on turbulent boundary layer
Jin-Hao Zhang(张津浩), Biao-Hui Li(李彪辉), Yu-Fei Wang(王宇飞), and Nan Jiang(姜楠). Chin. Phys. B, 2022, 31(7): 074702.
[2] Experimental investigation on drag reduction in a turbulent boundary layer with a submerged synthetic jet
Biao-Hui Li(李彪辉), Kang-Jun Wang(王康俊), Yu-Fei Wang(王宇飞), and Nan Jiang(姜楠). Chin. Phys. B, 2022, 31(2): 024702.
[3] Influence of uniform momentum zones on frictional drag within the turbulent boundary layer
Kangjun Wang(王康俊) and Nan Jiang(姜楠). Chin. Phys. B, 2021, 30(3): 034703.
[4] Effect of high-or low-speed fluctuations on the small-scale bursting events in an active control experiment
Xiao-Tong Cui(崔晓通), Nan Jiang(姜楠), and Zhan-Qi Tang(唐湛棋). Chin. Phys. B, 2021, 30(1): 014702.
[5] Coherent structures over riblets in turbulent boundary layer studied by combining time-resolved particle image velocimetry (TRPIV), proper orthogonal decomposition (POD), and finite-time Lyapunov exponent (FTLE)
Shan Li(李山), Nan Jiang(姜楠), Shaoqiong Yang(杨绍琼), Yongxiang Huang(黄永祥), Yanhua Wu(吴彦华). Chin. Phys. B, 2018, 27(10): 104701.
[6] Predetermined control of turbulent boundary layer with a piezoelectric oscillator
Xiao-Bo Zheng(郑小波), Nan Jiang(姜楠), Hao Zhang(张浩). Chin. Phys. B, 2016, 25(1): 014703.
[7] Convection and correlation of coherent structure in turbulent boundary layer using tomographic particle image velocimetry
Wang Wei (王维), Guan Xin-Lei (管新蕾), Jiang Nan (姜楠). Chin. Phys. B, 2014, 23(10): 104703.
[8] Universal form of the power spectrum of the aero-optical aberration caused by the supersonic turbulent boundary layer
Gao Qiong (高穹), Yi Shi-He (易仕和), Jiang Zong-Fu (姜宗福). Chin. Phys. B, 2014, 23(10): 104201.
[9] Temporal evolution of optical path difference of a supersonic turbulent boundary layer
Gao Qiong (高穹), Yi Shi-He (易仕和), Jiang Zong-Fu (姜宗福), He Lin (何霖), Xie Wen-Ke (谢文科). Chin. Phys. B, 2013, 22(1): 014202.
[10] Synchronization of different chaotic systems via active radial basis functions sliding mode controller
Guo Hui-Jun(郭会军), Yin You-Wei(尹有为), and Wang Hua-Min(王华民) . Chin. Phys. B, 2008, 17(5): 1652-1663.
[11] Generalized synchronization of two different chaotic systems
Li Guo-Hui(李国辉). Chin. Phys. B, 2007, 16(9): 2608-2611.
[12] An active control synchronization for two modified Chua circuits
Li Guo-Hui (李国辉). Chin. Phys. B, 2005, 14(3): 472-475.
No Suggested Reading articles found!