ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Multiple-image encryption by two-step phase-shifting interferometry and spatial multiplexing of smooth compressed signal |
Xue Zhang(张学), Xiangfeng Meng(孟祥锋), Yurong Wang(王玉荣), Xiulun Yang(杨修伦), Yongkai Yin(殷永凯) |
Department of Optics, School of Information Science and Engineering, and Shandong Provincial Key Laboratory of Laser Technology and Application, Shandong University, Jinan 250100, China |
|
|
Abstract A multiple-image encryption method based on two-step phase-shifting interferometry (PSI) and spatial multiplexing of a smooth compressed signal is proposed. In the encoding and encryption process, with the help of four index matrices to store original pixel positions, all the pixels of four secret images are firstly reordered in an ascending order; then, the four reordered images are transformed by five-order Haar wavelet transform and performed sparseness operation. After Arnold transform and pixels sampling operation, one combined image can be grouped with the aid of compressive sensing (CS) and spatial multiplexing techniques. Finally, putting the combined image at the input plane of the PSI encryption scheme, only two interferograms ciphertexts can be obtained. During the decoding and decryption, utilizing all the secret key groups and index matrices keys, all the original secret images can be successfully decrypted by a wave-front retrieval algorithm of two-step PSI, spatial de-multiplexing, inverse Arnold transform, inverse discrete wavelet transform, and pixels reordering operation.
|
Received: 12 December 2017
Revised: 05 March 2018
Accepted manuscript online:
|
PACS:
|
42.30.Wb
|
(Image reconstruction; tomography)
|
|
42.25.Hz
|
(Interference)
|
|
42.40.Kw
|
(Holographic interferometry; other holographic techniques)
|
|
07.60.Ly
|
(Interferometers)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61775121, 61307003, 61405122, and 11574311), Key R&D Program of Shandong Province, China (Grant No. 2018GGX101002), the Natural Science Foundation of Shandong Province, China (Grant No. R2016FM03), and the Fundamental Research Funds of Shandong University, China (Grant No. 2015GN031). |
Corresponding Authors:
Xiangfeng Meng
E-mail: xfmeng@sdu.edu.cn
|
Cite this article:
Xue Zhang(张学), Xiangfeng Meng(孟祥锋), Yurong Wang(王玉荣), Xiulun Yang(杨修伦), Yongkai Yin(殷永凯) Multiple-image encryption by two-step phase-shifting interferometry and spatial multiplexing of smooth compressed signal 2018 Chin. Phys. B 27 074205
|
[1] |
Refregier P and Javidi B 1995 Opt. Lett. 20 767
|
[2] |
Xie Z L, Qi B and Ma H T 2016 Chin. Phys. Lett. 33 044206
|
[3] |
Unnikrishnan G, Joseph J and Singh K 2000 Opt. Lett. 25 887
|
[4] |
Liu S T, Mi Q L and Zhu B H 2001 Opt. Lett. 26 1242
|
[5] |
Wang X G, Zhao D M, Jing F and Wei X F 2006 Opt. Express 14 1476
|
[6] |
Wan Y H, Man T L, Chen H, Jiang Z Q and Wang D Y 2014 Chin. Phys. Lett. 31 044203
|
[7] |
Li J C 2012 Acta Phys. Sin. 61 134203 (in Chinese)
|
[8] |
Wang R K, Watson I A and Chatwin C 1996 Opt. Eng. 35 2464
|
[9] |
Situ G and Zhang J 2005 Opt. Commun. 245 55
|
[10] |
Liu H Q, Ren Y Q, Zhou G Z, He Y, Xue Y L and Xiao T Q 2012 Acta Phys. Sin. 61 078701 (in Chinese)
|
[11] |
Zhang Y and Wang B 2008 Opt. Lett. 33 2443
|
[12] |
Zhou N R, Wang Y X and Gong L H 2011 Opt. Commun. 284 3234
|
[13] |
Liu Z J, Guo Q, Xu L, Ahmad M A and Liu S T 2010 Opt. Express 18 12033
|
[14] |
Nomura T, Mikan S, Morimoto Y and Javidi B 2003 Appl. Opt. 42 1508
|
[15] |
Kumar P, Joseph J and Singh K 2011 Appl. Opt. 50 1805
|
[16] |
Chen W, Situ G and Chen X 2013 Opt. Express 21 24680
|
[17] |
Xie Z L, Ma H T, Qi B, Ren G, T A N Y F, He B, Zeng H L and Jiang C 2015 Chin. Phys. Lett. 32 124203
|
[18] |
Chen W and Chen X 2013 Appl. Phys. Lett. 103 221106
|
[19] |
Si Y, Kong L J and Li Y N 2016 Chin. Phys. Lett. 33 034203
|
[20] |
Gao L, Tian J and Lin H L 2015 Chin. Phys. Lett. 32 014202
|
[21] |
Zhang Y D and Zhao S M 2017 Chin. Phys. B 26 054205
|
[22] |
Pang B Q, Wang S, Cheng T, Kong Q F, Wen L H and Yang P 2017 Chin. Phys. B 26 054204
|
[23] |
Tajahuerce E and Javidi B 2000 Appl. Opt. 39 6595
|
[24] |
Cai L Z, He M Z, Liu Q and Yang X L 2004 Appl. Opt. 43 3078
|
[25] |
Meng X F, Cai L Z, Xu X F, Yang X L, Shen X X, Dong G Y and Wang Y R 2006 Opt. Lett. 31 1414
|
[26] |
Donoho D L 2006 IEEE Trans. Inf. Theory 52 1289
|
[27] |
Candes E J and Wakin M B 2008 IEEE Signal Process. Mag. 25 21
|
[28] |
Zhang Y S, Zhou J T, Chen F, Zhang L Y, Wong K W, He X and Xiao D 2016 Neurocomputing 205 472
|
[29] |
Zhang Y S, Zhang L Y, Zhou J T, Liu L C, Chen F and He X 2016 IEEE Access 4 2507
|
[30] |
Hao C Q, Wang J, Deng B and Wei X L 2012 Acta Phys. Sin. 61 148901 (in Chinese)
|
[31] |
Zhou N R, Zhang A D, Zheng F and Gong L H 2014 Opt. Laser Technol. 62 152
|
[32] |
Li J, Li H B, Li J S, Pan Y Y and Li R 2015 Opt. Commun. 344 166
|
[33] |
Li J, Li J S, Pan Y Y and Li R 2015 Sci. Rep.-UK. 5 10374
|
[34] |
Situ G and Zhang J 2005 Opt. Lett. 30 1306
|
[35] |
Situ G and Zhang J 2006 J. Opt. A:Pure Appl. Opt. 8 391
|
[36] |
Wang Q, Guo Q, Lei L and Zhou J Y 2013 Appl. Opt. 52 6849
|
[37] |
Chen W 2016 IEEE Photon J. 8 1
|
[38] |
Barrera J F, Henao R, Tebaldi M, Torroba R and Bolognini N 2006 Opt. Commun. 259 532
|
[39] |
Deepan B, Quan C, Wang Y and Tay C J 2014 Appl. Opt. 53 4539
|
[40] |
Sui L S, Zhou B, Ning X J and Tian A L 2016 Opt. Express 24 499
|
[41] |
Chai X L, Gan Z H, Ke Yuan K, Lu Y and Chen Y R 2017 Chin. Phys. B 26 020504
|
[42] |
Ye G D, Huang X L, Zhang Y L and Wang Z X 2017 Chin. Phys. B 26 010501
|
[43] |
Li X Y, Meng X F, Yang X L, Yin Y K, Wang Y R, Peng X, He W Q, Dong G Y and Chen H Y 2016 IEEE Photon J. 8 4
|
[44] |
Zhu C X and Sun K H 2012 Acta Phys. Sin. 61 120503 (in Chinese)
|
[45] |
Gan T, Feng S T, Nie S P and Qing Z Z 2012 Acta Phys. Sin. 61 084203 (in Chinese)
|
[46] |
Ji D J, Qu G R, Hu C H, Liu B D, Jian J B and Guo X K 2017 Chin. Phys. B 26 060701
|
[47] |
Theis F J, Jung A, Puntonet C G and Lang E W 1969 IEEE T. Inform. Theory 15 419
|
[48] |
Chen S S, Donoho D L and Saunders M A 2001 SIAM Rev. 43 33
|
[49] |
Wei D and Milenkovic O 2009 IEEE T. Inform. Theory 55 2230
|
[50] |
Candes E J and Tao T 2006 IEEE T. Inform. Theory 52 5406
|
[51] |
Meng X F, Cai L Z, Wang Y R, Yang X L, Xu X F, Dong G Y, Shen X X, Zhang H and Cheng X C 2006 Appl. Opt. 45 3289
|
[52] |
Fan D S, Meng X F, Wang Y R, Yang X L, Peng X, He W Q, Dong G Y and Chen H Y 2013 Appl. Opt. 52 5645
|
[53] |
Wu J H, Liao X F and Yang B 2017 Signal Process. 141 109
|
[54] |
Zhang D, Liao X F, Yang B and Zhang Y S 2018 Multimed. Tools Appl. 77 2191
|
[55] |
Wu J H, Liao X F and Yang B 2018 Signal Process. 142 292
|
[56] |
Li B, Liao X F and Jiang Y 2017 Multimed. Tools Appl. 77 8911
|
[57] |
Hua W and Liao X F 2017 Multimed. Tools Appl. 76 7087
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|