Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(7): 074205    DOI: 10.1088/1674-1056/27/7/074205
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Multiple-image encryption by two-step phase-shifting interferometry and spatial multiplexing of smooth compressed signal

Xue Zhang(张学), Xiangfeng Meng(孟祥锋), Yurong Wang(王玉荣), Xiulun Yang(杨修伦), Yongkai Yin(殷永凯)
Department of Optics, School of Information Science and Engineering, and Shandong Provincial Key Laboratory of Laser Technology and Application, Shandong University, Jinan 250100, China
Abstract  A multiple-image encryption method based on two-step phase-shifting interferometry (PSI) and spatial multiplexing of a smooth compressed signal is proposed. In the encoding and encryption process, with the help of four index matrices to store original pixel positions, all the pixels of four secret images are firstly reordered in an ascending order; then, the four reordered images are transformed by five-order Haar wavelet transform and performed sparseness operation. After Arnold transform and pixels sampling operation, one combined image can be grouped with the aid of compressive sensing (CS) and spatial multiplexing techniques. Finally, putting the combined image at the input plane of the PSI encryption scheme, only two interferograms ciphertexts can be obtained. During the decoding and decryption, utilizing all the secret key groups and index matrices keys, all the original secret images can be successfully decrypted by a wave-front retrieval algorithm of two-step PSI, spatial de-multiplexing, inverse Arnold transform, inverse discrete wavelet transform, and pixels reordering operation.
Keywords:  compressive sensing      two-step phase-shifting interferometry      image encryption  
Received:  12 December 2017      Revised:  05 March 2018      Accepted manuscript online: 
PACS:  42.30.Wb (Image reconstruction; tomography)  
  42.25.Hz (Interference)  
  42.40.Kw (Holographic interferometry; other holographic techniques)  
  07.60.Ly (Interferometers)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61775121, 61307003, 61405122, and 11574311), Key R&D Program of Shandong Province, China (Grant No. 2018GGX101002), the Natural Science Foundation of Shandong Province, China (Grant No. R2016FM03), and the Fundamental Research Funds of Shandong University, China (Grant No. 2015GN031).
Corresponding Authors:  Xiangfeng Meng     E-mail:  xfmeng@sdu.edu.cn

Cite this article: 

Xue Zhang(张学), Xiangfeng Meng(孟祥锋), Yurong Wang(王玉荣), Xiulun Yang(杨修伦), Yongkai Yin(殷永凯) Multiple-image encryption by two-step phase-shifting interferometry and spatial multiplexing of smooth compressed signal 2018 Chin. Phys. B 27 074205

[1] Refregier P and Javidi B 1995 Opt. Lett. 20 767
[2] Xie Z L, Qi B and Ma H T 2016 Chin. Phys. Lett. 33 044206
[3] Unnikrishnan G, Joseph J and Singh K 2000 Opt. Lett. 25 887
[4] Liu S T, Mi Q L and Zhu B H 2001 Opt. Lett. 26 1242
[5] Wang X G, Zhao D M, Jing F and Wei X F 2006 Opt. Express 14 1476
[6] Wan Y H, Man T L, Chen H, Jiang Z Q and Wang D Y 2014 Chin. Phys. Lett. 31 044203
[7] Li J C 2012 Acta Phys. Sin. 61 134203 (in Chinese)
[8] Wang R K, Watson I A and Chatwin C 1996 Opt. Eng. 35 2464
[9] Situ G and Zhang J 2005 Opt. Commun. 245 55
[10] Liu H Q, Ren Y Q, Zhou G Z, He Y, Xue Y L and Xiao T Q 2012 Acta Phys. Sin. 61 078701 (in Chinese)
[11] Zhang Y and Wang B 2008 Opt. Lett. 33 2443
[12] Zhou N R, Wang Y X and Gong L H 2011 Opt. Commun. 284 3234
[13] Liu Z J, Guo Q, Xu L, Ahmad M A and Liu S T 2010 Opt. Express 18 12033
[14] Nomura T, Mikan S, Morimoto Y and Javidi B 2003 Appl. Opt. 42 1508
[15] Kumar P, Joseph J and Singh K 2011 Appl. Opt. 50 1805
[16] Chen W, Situ G and Chen X 2013 Opt. Express 21 24680
[17] Xie Z L, Ma H T, Qi B, Ren G, T A N Y F, He B, Zeng H L and Jiang C 2015 Chin. Phys. Lett. 32 124203
[18] Chen W and Chen X 2013 Appl. Phys. Lett. 103 221106
[19] Si Y, Kong L J and Li Y N 2016 Chin. Phys. Lett. 33 034203
[20] Gao L, Tian J and Lin H L 2015 Chin. Phys. Lett. 32 014202
[21] Zhang Y D and Zhao S M 2017 Chin. Phys. B 26 054205
[22] Pang B Q, Wang S, Cheng T, Kong Q F, Wen L H and Yang P 2017 Chin. Phys. B 26 054204
[23] Tajahuerce E and Javidi B 2000 Appl. Opt. 39 6595
[24] Cai L Z, He M Z, Liu Q and Yang X L 2004 Appl. Opt. 43 3078
[25] Meng X F, Cai L Z, Xu X F, Yang X L, Shen X X, Dong G Y and Wang Y R 2006 Opt. Lett. 31 1414
[26] Donoho D L 2006 IEEE Trans. Inf. Theory 52 1289
[27] Candes E J and Wakin M B 2008 IEEE Signal Process. Mag. 25 21
[28] Zhang Y S, Zhou J T, Chen F, Zhang L Y, Wong K W, He X and Xiao D 2016 Neurocomputing 205 472
[29] Zhang Y S, Zhang L Y, Zhou J T, Liu L C, Chen F and He X 2016 IEEE Access 4 2507
[30] Hao C Q, Wang J, Deng B and Wei X L 2012 Acta Phys. Sin. 61 148901 (in Chinese)
[31] Zhou N R, Zhang A D, Zheng F and Gong L H 2014 Opt. Laser Technol. 62 152
[32] Li J, Li H B, Li J S, Pan Y Y and Li R 2015 Opt. Commun. 344 166
[33] Li J, Li J S, Pan Y Y and Li R 2015 Sci. Rep.-UK. 5 10374
[34] Situ G and Zhang J 2005 Opt. Lett. 30 1306
[35] Situ G and Zhang J 2006 J. Opt. A:Pure Appl. Opt. 8 391
[36] Wang Q, Guo Q, Lei L and Zhou J Y 2013 Appl. Opt. 52 6849
[37] Chen W 2016 IEEE Photon J. 8 1
[38] Barrera J F, Henao R, Tebaldi M, Torroba R and Bolognini N 2006 Opt. Commun. 259 532
[39] Deepan B, Quan C, Wang Y and Tay C J 2014 Appl. Opt. 53 4539
[40] Sui L S, Zhou B, Ning X J and Tian A L 2016 Opt. Express 24 499
[41] Chai X L, Gan Z H, Ke Yuan K, Lu Y and Chen Y R 2017 Chin. Phys. B 26 020504
[42] Ye G D, Huang X L, Zhang Y L and Wang Z X 2017 Chin. Phys. B 26 010501
[43] Li X Y, Meng X F, Yang X L, Yin Y K, Wang Y R, Peng X, He W Q, Dong G Y and Chen H Y 2016 IEEE Photon J. 8 4
[44] Zhu C X and Sun K H 2012 Acta Phys. Sin. 61 120503 (in Chinese)
[45] Gan T, Feng S T, Nie S P and Qing Z Z 2012 Acta Phys. Sin. 61 084203 (in Chinese)
[46] Ji D J, Qu G R, Hu C H, Liu B D, Jian J B and Guo X K 2017 Chin. Phys. B 26 060701
[47] Theis F J, Jung A, Puntonet C G and Lang E W 1969 IEEE T. Inform. Theory 15 419
[48] Chen S S, Donoho D L and Saunders M A 2001 SIAM Rev. 43 33
[49] Wei D and Milenkovic O 2009 IEEE T. Inform. Theory 55 2230
[50] Candes E J and Tao T 2006 IEEE T. Inform. Theory 52 5406
[51] Meng X F, Cai L Z, Wang Y R, Yang X L, Xu X F, Dong G Y, Shen X X, Zhang H and Cheng X C 2006 Appl. Opt. 45 3289
[52] Fan D S, Meng X F, Wang Y R, Yang X L, Peng X, He W Q, Dong G Y and Chen H Y 2013 Appl. Opt. 52 5645
[53] Wu J H, Liao X F and Yang B 2017 Signal Process. 141 109
[54] Zhang D, Liao X F, Yang B and Zhang Y S 2018 Multimed. Tools Appl. 77 2191
[55] Wu J H, Liao X F and Yang B 2018 Signal Process. 142 292
[56] Li B, Liao X F and Jiang Y 2017 Multimed. Tools Appl. 77 8911
[57] Hua W and Liao X F 2017 Multimed. Tools Appl. 76 7087
[1] A color image encryption algorithm based on hyperchaotic map and DNA mutation
Xinyu Gao(高昕瑜), Bo Sun(孙博), Yinghong Cao(曹颖鸿), Santo Banerjee, and Jun Mou(牟俊). Chin. Phys. B, 2023, 32(3): 030501.
[2] Asymmetric image encryption algorithm based ona new three-dimensional improved logistic chaotic map
Guo-Dong Ye(叶国栋), Hui-Shan Wu(吴惠山), Xiao-Ling Huang(黄小玲), and Syh-Yuan Tan. Chin. Phys. B, 2023, 32(3): 030504.
[3] Lossless embedding: A visually meaningful image encryption algorithm based on hyperchaos and compressive sensing
Xing-Yuan Wang(王兴元), Xiao-Li Wang(王哓丽), Lin Teng(滕琳), Dong-Hua Jiang(蒋东华), and Yongjin Xian(咸永锦). Chin. Phys. B, 2023, 32(2): 020503.
[4] Synchronously scrambled diffuse image encryption method based on a new cosine chaotic map
Xiaopeng Yan(闫晓鹏), Xingyuan Wang(王兴元), and Yongjin Xian(咸永锦). Chin. Phys. B, 2022, 31(8): 080504.
[5] Exponential sine chaotification model for enhancing chaos and its hardware implementation
Rui Wang(王蕊), Meng-Yang Li(李孟洋), and Hai-Jun Luo(罗海军). Chin. Phys. B, 2022, 31(8): 080508.
[6] Efficient implementation of x-ray ghost imaging based on a modified compressive sensing algorithm
Haipeng Zhang(张海鹏), Ke Li(李可), Changzhe Zhao(赵昌哲), Jie Tang(汤杰), and Tiqiao Xiao(肖体乔). Chin. Phys. B, 2022, 31(6): 064202.
[7] Neural-mechanism-driven image block encryption algorithm incorporating a hyperchaotic system and cloud model
Peng-Fei Fang(方鹏飞), Han Liu(刘涵), Cheng-Mao Wu(吴成茂), and Min Liu(刘旻). Chin. Phys. B, 2022, 31(4): 040501.
[8] FPGA implementation and image encryption application of a new PRNG based on a memristive Hopfield neural network with a special activation gradient
Fei Yu(余飞), Zinan Zhang(张梓楠), Hui Shen(沈辉), Yuanyuan Huang(黄园媛), Shuo Cai(蔡烁), and Sichun Du(杜四春). Chin. Phys. B, 2022, 31(2): 020505.
[9] Finite-time complex projective synchronization of fractional-order complex-valued uncertain multi-link network and its image encryption application
Yong-Bing Hu(胡永兵), Xiao-Min Yang(杨晓敏), Da-Wei Ding(丁大为), and Zong-Li Yang(杨宗立). Chin. Phys. B, 2022, 31(11): 110501.
[10] An image encryption algorithm based on spatiotemporal chaos and middle order traversal of a binary tree
Yining Su(苏怡宁), Xingyuan Wang(王兴元), and Shujuan Lin(林淑娟). Chin. Phys. B, 2022, 31(11): 110503.
[11] Fractal sorting vector-based least significant bit chaotic permutation for image encryption
Yong-Jin Xian(咸永锦), Xing-Yuan Wang(王兴元), Ying-Qian Zhang(张盈谦), Xiao-Yu Wang(王晓雨), and Xiao-Hui Du(杜晓慧). Chin. Phys. B, 2021, 30(6): 060508.
[12] An image encryption algorithm based on improved baker transformation and chaotic S-box
Xing-Yuan Wang(王兴元), Huai-Huai Sun(孙怀怀), and Hao Gao(高浩). Chin. Phys. B, 2021, 30(6): 060507.
[13] Ghost imaging-based optical cryptosystem for multiple images using integral property of the Fourier transform
Yi Kang(康祎), Leihong Zhang(张雷洪), Hualong Ye(叶华龙), Dawei Zhang(张大伟), and Songlin Zhuang(庄松林). Chin. Phys. B, 2021, 30(12): 124207.
[14] A secure image protection algorithm by steganography and encryption using the 2D-TSCC
Qi Li(李琦), Xingyuan Wang(王兴元), He Wang(王赫), Xiaolin Ye(叶晓林), Shuang Zhou(周双), Suo Gao(高锁), and Yunqing Shi(施云庆). Chin. Phys. B, 2021, 30(11): 110501.
[15] Memristor-based hyper-chaotic circuit for image encryption
Jiao-Jiao Chen(陈娇娇), Deng-Wei Yan(闫登卫), Shu-Kai Duan(段书凯), and Li-Dan Wang(王丽丹). Chin. Phys. B, 2020, 29(11): 110504.
No Suggested Reading articles found!