Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(11): 118502    DOI: 10.1088/1674-1056/26/11/118502
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

An improved memristor model for brain-inspired computing

Errui Zhou(周二瑞), Liang Fang(方粮), Rulin Liu(刘汝霖), Zhenseng Tang(汤振森)
State Key Laboratory of High Performance Computing, College of Computer, National University of Defense Technology, Changsha 410073, China
Abstract  Memristors, as memristive devices, have received a great deal of interest since being fabricated by HP labs. The forgetting effect that has significant influences on memristors' performance has to be taken into account when they are employed. It is significant to build a good model that can express the forgetting effect well for application researches due to its promising prospects in brain-inspired computing. Some models are proposed to represent the forgetting effect but do not work well. In this paper, we present a novel window function, which has good performance in a drift model. We analyze the deficiencies of the previous drift diffusion models for the forgetting effect and propose an improved model. Moreover, the improved model is exploited as a synapse model in spiking neural networks to recognize digit images. Simulation results show that the improved model overcomes the defects of the previous models and can be used as a synapse model in brain-inspired computing due to its synaptic characteristics. The results also indicate that the improved model can express the forgetting effect better when it is employed in spiking neural networks, which means that more appropriate evaluations can be obtained in applications.
Keywords:  memristor      drift diffusion model      synaptic      brain-inspired computing  
Received:  10 May 2017      Revised:  17 August 2017      Accepted manuscript online: 
PACS:  85.35.-p (Nanoelectronic devices)  
  87.19.lv (Learning and memory)  
  87.19.lw (Plasticity)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61332003) and High Performance Computing Laboratory, China (Grant No. 201501-02).
Corresponding Authors:  Liang Fang     E-mail:  lfang@nudt.edu.cn

Cite this article: 

Errui Zhou(周二瑞), Liang Fang(方粮), Rulin Liu(刘汝霖), Zhenseng Tang(汤振森) An improved memristor model for brain-inspired computing 2017 Chin. Phys. B 26 118502

[1] Chua L O 1971 IEEE Tran. Circ. Th. 18 507
[2] Strukov D B, Snider G S, Stewart D R and Williams R S 2008 Nature 453 80
[3] Zhou J, Yang X J, Wu J J, Zhu X, Fang X D and Huang D 2013 Sci. China:Inf. Sci. 56 1
[4] Zhu X, Tang Y H, Wu C Q, Wu J J and Yi X 2014 Chin. Phys. B 23 028501
[5] Su S, Jian X C, Wang F, Han Y M, Tian Y X, Wang X Y, Zhang H Z and Zhang K L 2016 Chin. Phys. B 25 107302
[6] Li Z J and Zheng Y C 2013 Chin. Phys. B 22 040502
[7] Huang D, Wu J J and Tang Y H 2014 Chin. Phys. B 23 038404
[8] Jo S H, Chang T Ebong I, Bhadviya B B, Mazumder P and Lu W 2010 Nano Lett. 10 1297
[9] Covi E, Brivio S, Serb A, Prodromakis T, Fanciulli M and Spiga S 2016 Front. Neurosci. 10 482
[10] Zhang Y, Li Y, Wang X P and Friedman E G 2017 IEEE Tran. Elec. Dev. 64 1806
[11] Joglekar Y N and Wolf S J 2009 Eur. J. Phys. 30 661
[12] Biolek Z, Biolek D and Biolkova V 2009 Radioengineering 18 210
[13] Prodromakis T, Peh B P, Papavassiliou C and Toumazou C 2011 IEEE Tran. Elec. Dev. 58 3099
[14] Zha J X, Huang H and Liu Y J 2016 IEEE Tran. Circuits Syst. Ⅱ:Exp. Briefs 63 423
[15] Chang T, Jo S H, Kim K H, Sheridan P, Gaba S and Lu W 2011 Appl. Phys. A 102 857
[16] Chang T, Jo S H and Lu W 2011 ACS Nano 5 7669
[17] Wang Z Q, Xu H Y, Li X H, Yu H, Liu Y C and Zhu X J 2012 Adv. Funct. Mater. 22 2759
[18] Meng F Y, Duan S K, Wang L D, Hu X F and Dong Z K 2015 Acta Phys. Sin. 64 148501(in Chinese)
[19] Shao N, Zhang S B and Shao S Y 2016 Acta Phys. Sin. 65 128503(in Chinese)
[20] Strukov D B, Alibart F and Wiliams R S 2012 Appl. Phys. A 107 509
[21] Berdan R, Lim C, Khiat A and Papavassiliou C 2014 IEEE Elec. Dev. Lett. 35 135
[22] Chen L, Li C D, Huang T W, Ahmad H G and Chen Y R 2014 Phys. Lett. A 378 2924
[1] Inverse stochastic resonance in modular neural network with synaptic plasticity
Yong-Tao Yu(于永涛) and Xiao-Li Yang(杨晓丽). Chin. Phys. B, 2023, 32(3): 030201.
[2] Hopf bifurcation and phase synchronization in memristor-coupled Hindmarsh-Rose and FitzHugh-Nagumo neurons with two time delays
Zhan-Hong Guo(郭展宏), Zhi-Jun Li(李志军), Meng-Jiao Wang(王梦蛟), and Ming-Lin Ma(马铭磷). Chin. Phys. B, 2023, 32(3): 038701.
[3] Memristor's characteristics: From non-ideal to ideal
Fan Sun(孙帆), Jing Su(粟静), Jie Li(李杰), Shukai Duan(段书凯), and Xiaofang Hu(胡小方). Chin. Phys. B, 2023, 32(2): 028401.
[4] Memristor hyperchaos in a generalized Kolmogorov-type system with extreme multistability
Xiaodong Jiao(焦晓东), Mingfeng Yuan(袁明峰), Jin Tao(陶金), Hao Sun(孙昊), Qinglin Sun(孙青林), and Zengqiang Chen(陈增强). Chin. Phys. B, 2023, 32(1): 010507.
[5] High throughput N-modular redundancy for error correction design of memristive stateful logic
Xi Zhu(朱熙), Hui Xu(徐晖), Weiping Yang(杨为平), Zhiwei Li(李智炜), Haijun Liu(刘海军), Sen Liu(刘森), Yinan Wang(王义楠), and Hongchang Long(龙泓昌). Chin. Phys. B, 2023, 32(1): 018502.
[6] High-performance artificial neurons based on Ag/MXene/GST/Pt threshold switching memristors
Xiao-Juan Lian(连晓娟), Jin-Ke Fu(付金科), Zhi-Xuan Gao(高志瑄),Shi-Pu Gu(顾世浦), and Lei Wang(王磊). Chin. Phys. B, 2023, 32(1): 017304.
[7] Firing activities in a fractional-order Hindmarsh-Rose neuron with multistable memristor as autapse
Zhi-Jun Li(李志军), Wen-Qiang Xie(谢文强), Jin-Fang Zeng(曾金芳), and Yi-Cheng Zeng(曾以成). Chin. Phys. B, 2023, 32(1): 010503.
[8] Design and FPGA implementation of a memristor-based multi-scroll hyperchaotic system
Sheng-Hao Jia(贾生浩), Yu-Xia Li(李玉霞), Qing-Yu Shi(石擎宇), and Xia Huang(黄霞). Chin. Phys. B, 2022, 31(7): 070505.
[9] Pulse coding off-chip learning algorithm for memristive artificial neural network
Ming-Jian Guo(郭明健), Shu-Kai Duan(段书凯), and Li-Dan Wang(王丽丹). Chin. Phys. B, 2022, 31(7): 078702.
[10] Fabrication and investigation of ferroelectric memristors with various synaptic plasticities
Qi Qin(秦琦), Miaocheng Zhang(张缪城), Suhao Yao(姚苏昊), Xingyu Chen(陈星宇), Aoze Han(韩翱泽),Ziyang Chen(陈子洋), Chenxi Ma(马晨曦), Min Wang(王敏), Xintong Chen(陈昕彤), Yu Wang(王宇),Qiangqiang Zhang(张强强), Xiaoyan Liu(刘晓燕), Ertao Hu(胡二涛), Lei Wang(王磊), and Yi Tong(童祎). Chin. Phys. B, 2022, 31(7): 078502.
[11] A mathematical analysis: From memristor to fracmemristor
Wu-Yang Zhu(朱伍洋), Yi-Fei Pu(蒲亦非), Bo Liu(刘博), Bo Yu(余波), and Ji-Liu Zhou(周激流). Chin. Phys. B, 2022, 31(6): 060204.
[12] The dynamics of a memristor-based Rulkov neuron with fractional-order difference
Yan-Mei Lu(卢艳梅), Chun-Hua Wang(王春华), Quan-Li Deng(邓全利), and Cong Xu(徐聪). Chin. Phys. B, 2022, 31(6): 060502.
[13] Memristor-based multi-synaptic spiking neuron circuit for spiking neural network
Wenwu Jiang(蒋文武), Jie Li(李杰), Hongbo Liu(刘洪波), Xicong Qian(钱曦聪), Yuan Ge(葛源), Lidan Wang(王丽丹), and Shukai Duan(段书凯). Chin. Phys. B, 2022, 31(4): 040702.
[14] Complex dynamic behaviors in hyperbolic-type memristor-based cellular neural network
Ai-Xue Qi(齐爱学), Bin-Da Zhu(朱斌达), and Guang-Yi Wang(王光义). Chin. Phys. B, 2022, 31(2): 020502.
[15] A novel hyperchaotic map with sine chaotification and discrete memristor
Qiankun Sun(孙乾坤), Shaobo He(贺少波), Kehui Sun(孙克辉), and Huihai Wang(王会海). Chin. Phys. B, 2022, 31(12): 120501.
No Suggested Reading articles found!