Abstract Memristors, as memristive devices, have received a great deal of interest since being fabricated by HP labs. The forgetting effect that has significant influences on memristors' performance has to be taken into account when they are employed. It is significant to build a good model that can express the forgetting effect well for application researches due to its promising prospects in brain-inspired computing. Some models are proposed to represent the forgetting effect but do not work well. In this paper, we present a novel window function, which has good performance in a drift model. We analyze the deficiencies of the previous drift diffusion models for the forgetting effect and propose an improved model. Moreover, the improved model is exploited as a synapse model in spiking neural networks to recognize digit images. Simulation results show that the improved model overcomes the defects of the previous models and can be used as a synapse model in brain-inspired computing due to its synaptic characteristics. The results also indicate that the improved model can express the forgetting effect better when it is employed in spiking neural networks, which means that more appropriate evaluations can be obtained in applications.
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61332003) and High Performance Computing Laboratory, China (Grant No. 201501-02).
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.