Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(10): 109501    DOI: 10.1088/1674-1056/26/10/109501
GEOPHYSICS, ASTRONOMY, AND ASTROPHYSICS Prev  

Quadratic interaction effect on the dark energy density in the universe

Derya G Deveci1,2, Ekrem Aydiner1
1. Department of Physics, Faculty of Science, İstanbul University, Fatih Tr-34134, İstanbul, Turkey;
2. Department of Opticianry, Altınbaş University, Tr-34144 İstanbul, Turkey
Abstract  In this study, we deal with the holographic model of interacting dark components of dark energy and dark matter quadratic case of the equation of state parameter (EoS). The effective equations of states for the interacting holographic energy density are derived and the results are analyzed and compared with the solution of the linear form in the literature. The result of our work shows that the value of interaction term between dark components affects the fixed points at far future in the DE-dominated universe in the case of quadratic EoS parameter; it is a different result from the linear case in the theoretical results in the literature, and as the Quintom scenario the equations of state had coincidence at the cosmological constant boundary of -1 from above to below.
Keywords:  dark energy      dark matter  
Received:  06 June 2017      Revised:  08 July 2017      Accepted manuscript online: 
PACS:  95.36.+x (Dark energy)  
  98.80.-k (Cosmology)  
  95.35.+d (Dark matter)  
Corresponding Authors:  Ekrem Aydiner     E-mail:  ekrem.aydiner@istanbul.edu.tr

Cite this article: 

Derya G Deveci, Ekrem Aydiner Quadratic interaction effect on the dark energy density in the universe 2017 Chin. Phys. B 26 109501

[1] Riess A G, Filippenko A V, Challis P, et al. 1998 Astron. J. 116 1009
[2] Perlmutter S, Aldering G, Goldhaber G, ıt et al. 1999 Astron. J. 517 565
[3] Fabris J C, Goncalves S V B and De Souza P E 2002 arXiv:preprint astro-ph/0207430
[4] Setare M R 2007 J. Cosm. Astron. Phys. 2007 023
[5] Jussi V, et al. 2015 J. Cosm. Astron. Phys. 2 015
[6] Yang W, Li, et al. 2016 J. Cosm. Astron. Phys. 2016 007
[7] Copeland E J, Mohammad S and Tsujikawa S 2006 Int. J. Mod. Phys. D 15 1753
[8] Sadeghi J, Setare M R, Banijamali A and Milani F 2008 Phys. Rev. B 66 92
[9] Caldera-Cabral G, Maartens R and Urena-Lopez L A 2009 Phys. Rev. D 79 063518
[10] Feng B, Xiulian W and Xinmin Z 2005 Phys. Rev. B 79 063518
[11] Cai Y F, Saridakis E N, Setare M R and Xia J Q 2010 Phys. Rep. 493 1
[12] Hu B and Ling Y 2006 Phys. Rev. D 73 123510
[13] Zimdahl W Y 2005 Int. J. Mod. Phys. D 14 2319
[14] Dalal N, Abazajian K, Jenkins E and Manohar A V 2001 Phys. Rev. Lett. 87 141302
[15] Bekenstein J D 1994 Phys. Rev. D 49 1912
[16] Cohen A G, Kaplan D B and Nelson A E 1999 Phys. Rev. Lett. 82 4971
[17] Bousso R 2002 Rev. Mod. Phys. 74 825
[18] Wang S, Wang Y and Li M 2016 arXiv:1612.00345
[19] Wang B, Gong Y and Abdalla E 2005 Phys. Rev. B 624 141
[20] Kim K H, Lee H W and Myung Y S 2007 Phys. Rev. B 648 107
[21] Kim H, Lee H W and Myung Y S 2006 Phys. Rev. B 632 605
[22] Wang B, Lin C Y and Abdalla E 2006 Phys. Rev. B 637 357
[23] Wang B, Abdalla E, Atrio-Barandela F and Pavon D 2016 arXiv:1603.08299
[24] Berger M S and Shojaei H 2006 Phys. Rev. D 73 083528
[25] Aydiner E 2016 arXiv:1610.07338
[26] Setare M R 2006 Phys. Rev. B 642 1
[27] Sheykhi A 2009 Phys. Rev. B 680 113
[28] Kishore N A and Marco B 2006 Phys. Rev. D 74 023524
[29] Sharma R and Ratanpal B S 2013 Int. J. Mod. Phys. D 22 1350074
[30] Spergel D N, Bean R, Doré O, et al. 2007 Astron. J. Suppl. Ser. 170 377
[1] Kinetic theory of Jeans' gravitational instability in millicharged dark matter system
Hui Chen(陈辉), Wei-Heng Yang(杨伟恒), Yu-Zhen Xiong(熊玉珍), and San-Qiu Liu(刘三秋). Chin. Phys. B, 2022, 31(7): 070401.
[2] Mechanical properties of the thermal equilibrium Friedmann-Robertson-Walker universe model
Wei Yi-Huan (魏益焕), Lan Tian-Bao (兰天葆), Zhang Yue-Zhu (张月竹), Fu Yan-Yan (付妍妍). Chin. Phys. B, 2014, 23(5): 050401.
[3] New initial condition of the new agegraphic dark energy model
Li Yun-He (李云鹤), Zhang Jing-Fei (张敬飞), Zhang Xin (张鑫). Chin. Phys. B, 2013, 22(3): 039501.
[4] Thermodynamic properties of Reissner–Nordström–de Sitter quintessence black holes
Wei Yi-Huan (魏益焕), Ren Jun (任军). Chin. Phys. B, 2013, 22(3): 030402.
[5] Constraints on the unified model of dark matter and dark energy
Lü Jian-Bo(吕剑波), Wu Ya-Bo(吴亚波), Xu Li-Xin(徐立昕), and Wang Yu-Ting(王钰婷) . Chin. Phys. B, 2011, 20(7): 079801.
[6] Growth of linear matter perturbations and current observational constraints
Fu Xiang-Yun(付响云), Wu Pu-Xun(吴普训), and Yu Hong-Wei(余洪伟). Chin. Phys. B, 2010, 19(7): 079801.
[7] Exact solution of phantom dark energy model
Wang Wen-Fu(王文福), Shui Zheng-Wei(税正伟), and Tang Bin(唐斌). Chin. Phys. B, 2010, 19(11): 119801.
[8] Reconstructing dark energy potentials from parameterized deceleration parameters
Wang Yu-Ting(王钰婷), Xu Li-Xin(徐立昕), Lü Jian-Bo(吕剑波), and Gui Yuan-Xing(桂元星) . Chin. Phys. B, 2010, 19(1): 019801.
[9] New agegraphic dark energy as a rolling tachyon
Cui Jing-Lei(崔晶磊),Zhang Li(张莉), Zhang Jing-Fei(张敬飞), and Zhang Xin(张鑫) . Chin. Phys. B, 2010, 19(1): 019802.
[10] Effects of dark energy interacting with massive neutrinos and dark matter on universe evolution
Chen Ju-Hua(陈菊华) and Wang Yong-Jiu(王永久). Chin. Phys. B, 2010, 19(1): 010401.
[11] Observational constraints on the accelerating universe in the framework of a 5D bounce cosmological model
Lü Jian-Bo(吕剑波), Xu Li-Xin(徐立昕), Liu Mo-Lin(刘墨林), and Gui Yuan-Xing(桂元星). Chin. Phys. B, 2009, 18(4): 1711-1720.
[12] Influence of dark energy on time-like geodesic motion in Schwarzschild spacetime
Chen Ju-Hua(陈菊华) and Wang Yong-Jiu(王永久). Chin. Phys. B, 2008, 17(4): 1184-1188.
[13] The double Lagrangian with U(1, J) symmetry and its applications to the cosmology
Wu Ya-Bo(吴亚波), Lü Jian-Bo(吕剑波), He Jing(贺敬), and Fu Ming-Hui(付明慧). Chin. Phys. B, 2007, 16(12): 3560-3565.
[14] Dynamics of quintessential inflation
Zhai Xiang-Hua(翟向华) and Zhao Yi-Bin(赵一斌). Chin. Phys. B, 2006, 15(10): 2465-2469.
No Suggested Reading articles found!