CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Exact solutions of an Ising spin chain with a spin-1 impurity |
Xuchu Huang(黄旭初) |
Department of Physics, Changji University, Changji 831100, China |
|
|
Abstract An exact solution of a single impurity model is hard to derive since it breaks translation invariance symmetry. We present the exact solution of the spin-1/2 transverse Ising chain imbedded by a spin-1 impurity. Using the hole decomposition scheme, we exactly solve the spin-1 impurity in two subspaces which are generated by a conserved hole operator. The impurity enlarges the energy deformation of the ground state above a pure transverse Ising system without impurity. The specific heat coefficient shows a small anomaly at low temperature for finite size. This indicates that the impurity can tune the ground state from a magnetic impurity space to a non-magnetic impurity space, which only exists for spin-1 impurity comparing with spin-1/2 impurity and a pure transverse Ising chain without impurity. These behaviors essentially come from adding impurity freedom, which induces a competition between hole and fermion excitation depending on the coupling strength with its neighbor and the single-ion anisotropy.
|
Received: 03 August 2016
Revised: 26 November 2016
Accepted manuscript online:
|
PACS:
|
75.10.Pq
|
(Spin chain models)
|
|
02.30.Ik
|
(Integrable systems)
|
|
75.10.Dg
|
(Crystal-field theory and spin Hamiltonians)
|
|
Fund: Project supported by the Xinjiang Natural Science Foundation of China (Grant No. 2016D01C003). |
Corresponding Authors:
Xuchu Huang
E-mail: hxuchu@163.com
|
Cite this article:
Xuchu Huang(黄旭初) Exact solutions of an Ising spin chain with a spin-1 impurity 2017 Chin. Phys. B 26 037501
|
[1] |
Balents L 2010 Nature 464 199
|
[2] |
Gopalan S, Rice T M and Sigrist M 1994 Phys. Rev. B 49 8901
|
[3] |
Binder K and Young A P 1986 Rev. Mod. Phys. 58 801
|
[4] |
Fisher D S and Huse D A 1986 Phys. Rev. Lett. 56 1601
|
[5] |
Dioguardi A P, Crocker J, Shockley A C, Lin C H, Shirer K R, Nisson D M, Lawson M M, apRoberts-Warren N, Canfield P C, Bud'ko S L, Ran S and Curro N J2013 Phys. Rev. Lett. 111 207201
|
[6] |
Yuan Z G and Zhang P 2015 Chin. Phys. Lett. 32 60301
|
[7] |
Pasupathy A N, Bialczak R C, Martinek J, Grose J E, Donev L A K, McEuen P L and Ralph D C 2004 Science 306 86
|
[8] |
Nishida Y 2013 Phys. Rev. Lett. 111 135301
|
[9] |
Zhang Y H, Kahle S, Herden T, Stroh C, Mayor M, Schlickum U, Ternes M, Wahl P and Kern K 2013 Nat. Commun. 4 2110
|
[10] |
Chen J J, Duan J Z, Zhang X Z, Jiang X and Duan W S 2015 Acta Phys. Sin. 64 0238101 (in Chinese)
|
[11] |
Liao K S, Li Z F, Li L, Wang C, Zhou X H, Dai N and Li N 2015 Acta Phys. Sin. 64 227302 (in Chinese)
|
[12] |
Hase M, Terasaki I and Uchinokura K 1993 Phys. Rev. Lett. 70 3651
|
[13] |
Uchiyama Y, Sasago Y, Tsukada I, Uchinokura K, Zheludev A, Hayashi T, Miura N and Böni P 1999 Phys. Rev. Lett. 83 632
|
[14] |
Fujiwara N, Yasuoka H, Fujishiro Y, Azuma M and Takano M 1998 Phys. Rev. Lett. 80 604
|
[15] |
Shender E F and Kivelson S A 1991 Phys. Rev. Lett. 66 2384
|
[16] |
Bobroff J, Laflorencie N, Alexander L K, Mahajan A V, Koteswararao B and Mendels P 2009 Phys. Rev. Lett. 103 047201
|
[17] |
Simutis G, Gvasaliya S, Mansson M, Chernyshev A L, Mohan A, Singh S, Hess C, Savici A T, Kolesnikov A I, Piovano A, Perring T, Zaliznyak I, Buchner B and Zheludev A 2013 Phys. Rev. Lett. 111 067204
|
[18] |
Kane C L and Fisher M P A 1992 Phys. Rev. B 46 15233
|
[19] |
Yang L J, Cao J P and Yang W L 2015 Chin. Phys. B 24 107502
|
[20] |
Andrei N and Johannesson H 1984 Phys. Lett. A 100 108
|
[21] |
Lee K J B and Schlottmann P 1988 Phys. Rev. B 37 379
|
[22] |
Qiao J and Zhou B 2015 Chin. Phys. B 24 110306
|
[23] |
Oitmaa J and von Brasch A M A 2003 Phys. Rev. B 67 172402
|
[24] |
Oitmaa J and Zheng W 2003 Physica A 328 185
|
[25] |
Yang Z H, Yang L P, Dai J H and Xiang T 2008 Phys. Rev. Lett. 100 067203
|
[26] |
Huang X C and Yang Z H 2015 J. Magn. Magn. Mater. 381 372
|
[27] |
Huang X C and Yang Z H 2015 Solid State Commun. 204 28
|
[28] |
Eggert S and Affleck I 1992 Phys. Rev. B 46 10866
|
[29] |
Schlottmann P 2000 Nucl. Phys. B 565 535
|
[30] |
Yang Z H, Yang L P, Wu H N, Dai J H and Xiang T 2009 Phys. Rev. B 79 214427
|
[31] |
Jordan P and Wigner E 1928 Z. Phys. 47 631
|
[32] |
Zvyagin A A 1997 Phys. Rev. Lett. 79 4641
|
[33] |
Yuan Z G and Zhang P 2015 Chin. Phys. Lett. 32 060301
|
[34] |
Ando Y, Miyamoto N, Segawa K, Kawata T and Terasaki I 1999 Phys. Rev. B 60 10580
|
[35] |
Custers J, Gegenwart P, Wilhelm H, Neumaier K, Tokiwa Y, Trovarelli O, Geibel C, Steglich F, Pépin C and Coleman P 2003 Nature 424 524
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|