Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(3): 037501    DOI: 10.1088/1674-1056/26/3/037501
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Exact solutions of an Ising spin chain with a spin-1 impurity

Xuchu Huang(黄旭初)
Department of Physics, Changji University, Changji 831100, China
Abstract  An exact solution of a single impurity model is hard to derive since it breaks translation invariance symmetry. We present the exact solution of the spin-1/2 transverse Ising chain imbedded by a spin-1 impurity. Using the hole decomposition scheme, we exactly solve the spin-1 impurity in two subspaces which are generated by a conserved hole operator. The impurity enlarges the energy deformation of the ground state above a pure transverse Ising system without impurity. The specific heat coefficient shows a small anomaly at low temperature for finite size. This indicates that the impurity can tune the ground state from a magnetic impurity space to a non-magnetic impurity space, which only exists for spin-1 impurity comparing with spin-1/2 impurity and a pure transverse Ising chain without impurity. These behaviors essentially come from adding impurity freedom, which induces a competition between hole and fermion excitation depending on the coupling strength with its neighbor and the single-ion anisotropy.
Keywords:  exact solution      spin chain      impurity  
Received:  03 August 2016      Revised:  26 November 2016      Accepted manuscript online: 
PACS:  75.10.Pq (Spin chain models)  
  02.30.Ik (Integrable systems)  
  75.10.Dg (Crystal-field theory and spin Hamiltonians)  
Fund: Project supported by the Xinjiang Natural Science Foundation of China (Grant No. 2016D01C003).
Corresponding Authors:  Xuchu Huang     E-mail:  hxuchu@163.com

Cite this article: 

Xuchu Huang(黄旭初) Exact solutions of an Ising spin chain with a spin-1 impurity 2017 Chin. Phys. B 26 037501

[1] Balents L 2010 Nature 464 199
[2] Gopalan S, Rice T M and Sigrist M 1994 Phys. Rev. B 49 8901
[3] Binder K and Young A P 1986 Rev. Mod. Phys. 58 801
[4] Fisher D S and Huse D A 1986 Phys. Rev. Lett. 56 1601
[5] Dioguardi A P, Crocker J, Shockley A C, Lin C H, Shirer K R, Nisson D M, Lawson M M, apRoberts-Warren N, Canfield P C, Bud'ko S L, Ran S and Curro N J2013 Phys. Rev. Lett. 111 207201
[6] Yuan Z G and Zhang P 2015 Chin. Phys. Lett. 32 60301
[7] Pasupathy A N, Bialczak R C, Martinek J, Grose J E, Donev L A K, McEuen P L and Ralph D C 2004 Science 306 86
[8] Nishida Y 2013 Phys. Rev. Lett. 111 135301
[9] Zhang Y H, Kahle S, Herden T, Stroh C, Mayor M, Schlickum U, Ternes M, Wahl P and Kern K 2013 Nat. Commun. 4 2110
[10] Chen J J, Duan J Z, Zhang X Z, Jiang X and Duan W S 2015 Acta Phys. Sin. 64 0238101 (in Chinese)
[11] Liao K S, Li Z F, Li L, Wang C, Zhou X H, Dai N and Li N 2015 Acta Phys. Sin. 64 227302 (in Chinese)
[12] Hase M, Terasaki I and Uchinokura K 1993 Phys. Rev. Lett. 70 3651
[13] Uchiyama Y, Sasago Y, Tsukada I, Uchinokura K, Zheludev A, Hayashi T, Miura N and Böni P 1999 Phys. Rev. Lett. 83 632
[14] Fujiwara N, Yasuoka H, Fujishiro Y, Azuma M and Takano M 1998 Phys. Rev. Lett. 80 604
[15] Shender E F and Kivelson S A 1991 Phys. Rev. Lett. 66 2384
[16] Bobroff J, Laflorencie N, Alexander L K, Mahajan A V, Koteswararao B and Mendels P 2009 Phys. Rev. Lett. 103 047201
[17] Simutis G, Gvasaliya S, Mansson M, Chernyshev A L, Mohan A, Singh S, Hess C, Savici A T, Kolesnikov A I, Piovano A, Perring T, Zaliznyak I, Buchner B and Zheludev A 2013 Phys. Rev. Lett. 111 067204
[18] Kane C L and Fisher M P A 1992 Phys. Rev. B 46 15233
[19] Yang L J, Cao J P and Yang W L 2015 Chin. Phys. B 24 107502
[20] Andrei N and Johannesson H 1984 Phys. Lett. A 100 108
[21] Lee K J B and Schlottmann P 1988 Phys. Rev. B 37 379
[22] Qiao J and Zhou B 2015 Chin. Phys. B 24 110306
[23] Oitmaa J and von Brasch A M A 2003 Phys. Rev. B 67 172402
[24] Oitmaa J and Zheng W 2003 Physica A 328 185
[25] Yang Z H, Yang L P, Dai J H and Xiang T 2008 Phys. Rev. Lett. 100 067203
[26] Huang X C and Yang Z H 2015 J. Magn. Magn. Mater. 381 372
[27] Huang X C and Yang Z H 2015 Solid State Commun. 204 28
[28] Eggert S and Affleck I 1992 Phys. Rev. B 46 10866
[29] Schlottmann P 2000 Nucl. Phys. B 565 535
[30] Yang Z H, Yang L P, Wu H N, Dai J H and Xiang T 2009 Phys. Rev. B 79 214427
[31] Jordan P and Wigner E 1928 Z. Phys. 47 631
[32] Zvyagin A A 1997 Phys. Rev. Lett. 79 4641
[33] Yuan Z G and Zhang P 2015 Chin. Phys. Lett. 32 060301
[34] Ando Y, Miyamoto N, Segawa K, Kawata T and Terasaki I 1999 Phys. Rev. B 60 10580
[35] Custers J, Gegenwart P, Wilhelm H, Neumaier K, Tokiwa Y, Trovarelli O, Geibel C, Steglich F, Pépin C and Coleman P 2003 Nature 424 524
[1] Exact surface energy and elementary excitations of the XXX spin-1/2 chain with arbitrary non-diagonal boundary fields
Jia-Sheng Dong(董家生), Pengcheng Lu(路鹏程), Pei Sun(孙佩), Yi Qiao(乔艺), Junpeng Cao(曹俊鹏), Kun Hao(郝昆), and Wen-Li Yang(杨文力). Chin. Phys. B, 2023, 32(1): 017501.
[2] Low-temperature heat transport of the zigzag spin-chain compound SrEr2O4
Liguo Chu(褚利国), Shuangkui Guang(光双魁), Haidong Zhou(周海东), Hong Zhu(朱弘), and Xuefeng Sun(孙学峰). Chin. Phys. B, 2022, 31(8): 087505.
[3] Exact solutions of non-Hermitian chains with asymmetric long-range hopping under specific boundary conditions
Cui-Xian Guo(郭翠仙) and Shu Chen(陈澍). Chin. Phys. B, 2022, 31(1): 010313.
[4] Detection of multi-spin interaction of a quenched XY chain by the average work and the relative entropy
Xiu-Xing Zhang(张修兴), Fang-Jv Li(李芳菊), Kai Wang(王凯), Jing Xue(薛晶), Guang-Wen Huo(霍广文), Ai-Ping Fang(方爱平), and Hong-Rong Li(李宏荣). Chin. Phys. B, 2021, 30(9): 090504.
[5] Plasticity and melting characteristics of metal Al with Ti-cluster under shock loading
Dong-Lin Luan(栾栋林), Ya-Bin Wang(王亚斌), Guo-Meng Li(李果蒙), Lei Yuan(袁磊), and Jun Chen(陈军). Chin. Phys. B, 2021, 30(7): 073103.
[6] Reduction of impurity confinement time by combined heating of LHW and ECRH in EAST
Zong Xu(许棕), Zhen-Wei Wu(吴振伟), Ling Zhang(张凌), Yue-Heng Huang(黄跃恒), Wei Gao(高伟), Yun-Xin Cheng(程云鑫), Xiao-Dong Lin(林晓东), Xiang Gao(高翔), Ying-Jie Chen(陈颖杰), Lei Li(黎嫘), Yin-Xian Jie(揭银先), Qing Zang(臧庆), Hai-Qing Liu(刘海庆), and EAST team. Chin. Phys. B, 2021, 30(7): 075205.
[7] Magnetic impurity in hybrid and type-II nodal line semimetals
Xiao-Rong Yang(杨晓容), Zhen-Zhen Huang(黄真真), Wan-Sheng Wang(王万胜), and Jin-Hua Sun(孙金华). Chin. Phys. B, 2021, 30(6): 067103.
[8] High performance infrared detectors compatible with CMOS-circuit process
Chao Wang(王超), Ning Li(李宁), Ning Dai(戴宁), Wang-Zhou Shi(石旺舟), Gu-Jin Hu(胡古今), and He Zhu(朱贺). Chin. Phys. B, 2021, 30(5): 050702.
[9] Exact solution of an integrable quantum spin chain with competing interactions
Jian Wang(王健), Yi Qiao(乔艺), Junpeng Cao(曹俊鹏), and Wen-Li Yang(杨文力). Chin. Phys. B, 2021, 30(11): 117501.
[10] Exact scattering states in one-dimensional Hermitian and non-Hermitian potentials
Ruo-Lin Chai(柴若霖), Qiong-Tao Xie(谢琼涛), Xiao-Liang Liu(刘小良). Chin. Phys. B, 2020, 29(9): 090301.
[11] Effects of built-in electric field and donor impurity on linear and nonlinear optical properties of wurtzite InxGa1-xN/GaN nanostructures
Xiao-Chen Yang(杨晓晨), Yan Xing(邢雁). Chin. Phys. B, 2020, 29(8): 087802.
[12] Exact solution of the (1+2)-dimensional generalized Kemmer oscillator in the cosmic string background with the magnetic field
Yi Yang(杨毅), Shao-Hong Cai(蔡绍洪), Zheng-Wen Long(隆正文), Hao Chen(陈浩), Chao-Yun Long(龙超云). Chin. Phys. B, 2020, 29(7): 070302.
[13] Exact analytical results for a two-level quantum system under a Lorentzian-shaped pulse field
Qiong-Tao Xie(谢琼涛), Xiao-Liang Liu(刘小良). Chin. Phys. B, 2020, 29(6): 060305.
[14] Exact solution of a topological spin ring with an impurity
Xu-Chu Huang(黄旭初), Yi-Hua Song(宋艺华), Yi Sun(孙毅). Chin. Phys. B, 2020, 29(6): 067501.
[15] Role of the spin anisotropy of the interchain interaction in weakly coupled antiferromagnetic Heisenberg chains
Yuchen Fan(樊宇辰), Rong Yu(俞榕). Chin. Phys. B, 2020, 29(5): 057505.
No Suggested Reading articles found!