Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(3): 030502    DOI: 10.1088/1674-1056/26/3/030502
GENERAL Prev   Next  

Homoclinic and heteroclinic chaos in nonlinear systems driven by trichotomous noise

You-Ming Lei(雷佑铭), Hong-Xia Zhang(张红霞)
Department of Applied Mathematics, Northwestern Polytechnical University, Xi'an 710072, China
Abstract  The homoclinic and heteroclinic chaos in nonlinear systems subjected to trichotomous noise excitation are studied. The Duffing system and the Josephson-junction system are taken for example to calculate the corresponding amplitude thresholds for the onset of chaos on the basis of the stochastic Melnikov process with the mean-square criterion. It is shown that the amplitude threshold for the onset of chaos can be adjusted by changing the internal parameters of trichotomous noise, thereby inducing or suppressing chaotic behaviors in the two systems driven by trichotomous noise. The effects of trichotomous noise on the systems are verified by vanishing the mean largest Lyapunov exponent and demonstrated by phase diagrams and time histories.
Keywords:  trichotomous noise      chaos      Melnikov method      Lyapunov exponent  
Received:  28 October 2016      Revised:  15 December 2016      Accepted manuscript online: 
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  05.45.Pq (Numerical simulations of chaotic systems)  
  02.50.Ey (Stochastic processes)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11672231), the Natural Science Foundation of Shaanxi Province, China (Grant No. 2016JM1010), the Fundamental Research Funds for the Central Universities, China (Grant No. 3102015ZY073), and the Seed Foundation of Innovation and Creation for Graduate Students in Northwestern Polytechnical University, China.
Corresponding Authors:  Hong-Xia Zhang     E-mail:  zhanghongxia@mail.nwpu.edu.cn

Cite this article: 

You-Ming Lei(雷佑铭), Hong-Xia Zhang(张红霞) Homoclinic and heteroclinic chaos in nonlinear systems driven by trichotomous noise 2017 Chin. Phys. B 26 030502

[1] Koch B P and Leven R W 1985 Physica D 16 1
[2] Ariaratnam S T, Xie W C and Vrscay E R 1989 Dyn. Stability Syst. 4 111
[3] Shaw S W and Rand R H 1989 Inter. J. Non-Linear Mech. 24 41
[4] Xie W C 1994 Nonlinear Stochastic Dynamics, AMD 192 215
[5] Lin H and Yim S C S 1996 ASME J. Appl. Mech. 63 509
[6] Awrejcewicz J and Sendkowski D 2004 Phys. Lett. A 330 371
[7] Awrejcewicz J and Pyryev Y 2006 Nonlinear Anal., Real World Appl. 7 12
[8] Awrejcewicz J and Holicke M 2006 Math. Probl. Eng. 2006 1
[9] Lei Y M and Xu W 2007 Acta Phys. Sin. 56 5103 (in Chinese)
[10] Zhang W, Yao M H and Zhang J H 2009 J. Sound Vib. 319 541
[11] Yang X W, Tian R L, Cao Q J and Wu Q L 2012 Chin. Phys. B 21 20503
[12] Elston T C and Doering C R 1996 J. Stat. Phys. 83 359
[13] Horsthemke W and Lefever R 1984 Noise-induced Transitions (Berlin: Springer)
[14] Bena I, Van den Broeck C, Kawai R and Lindenberg K 2002 Phys. Rev. E 66 045603
[15] Gitterman M 2003 Phys. Rev. E 67 057103
[16] Li J H and Han Y X 2006 Phys. Rev. E 74 051115
[17] Lei Y M, Fu R, Yang Y and Wang Y Y 2016 J. Sound Vib. 363 68
[18] Li P, Nie L R, Lü X M and Zhang Q B 2011 Chin. Phys. B 20 100502
[19] Mankin R, Ainsaar A and Reiter E 2000 Phys. Rev. E 61 6359
[20] Mankin R, Ainsaar A and Reiter E 1999 Phys. Rev. E 60 1374
[21] Mankin R, Laas K, Laas T and Reiter E 2008 Phys. Rev. E 78 031120
[22] Laas K, Mankin R and Rekker A 2009 Phys. Rev. E 79 051128
[23] Gitterman M 2012 Physica A 391 5343
[24] Mankin R, Soika E and Lumi N 2014 Physica A 411 128
[25] Mankin R, Ainsaar A, Haljas A and Reiter E 2002 Phys. Rev. E 65 051108
[26] Mankin R, Soika E and Sauga A 2008 WSEAS Trans. Syst. 7 239
[27] Soika E, Mankin R and Priimets J 2012 Proc. Est. Acad. Sci., Phys. Math. 61 113
[28] Guo F, Li H and Liu J 2014 Physica A 409 1
[29] Soika E and Mankin R 2010 WSEAS Trans. Biol. Biomed. 7 21
[30] Zhong S C, Wei K, Gao S L and Ma H 2015 J. Stat. Phys. 159 195
[31] Lin L F, Chen C and Wang H Q 2016 J. Stat. Mech. 2016 023201
[32] Yang T T, Zhang H Q, Xu Y and Xu W 2014 Inter. J. Non-Linear Mech. 67 42
[33] Zhang H Q, Yang T T, Xu Y and Xu W 2015 Eur. Phys. J. B 88 1
[34] Birx D L and Pipenberg S J 1992 IEEE International Joint Conference on Neural Network, June 7-11, 1992, p. 881
[35] Frey M and Simiu E 1993 Physica D 63 321
[36] Privault N 1994 Stochastics, Stochastics Rep. 51 83
[37] Kendall B 2001 Chaos, Solitons & Fractals 12 321
[38] Cveticanin L and Zukovic M 2009 J. Sound Vib. 326 768
[39] Sharma A, Patidar V, Purohit G and Sud K K 2012 Commun. Nonlinear Sci. Numer. Simul. 17 2254
[40] Srinil N and Zanganeh H 2012 Ocean Eng. 53 83
[41] Li Y, Yuan Y, Mandic D P and Yang B J 2009 Chin. Phys. B 18 958
[42] Likharev K K and Semenov V K 1991 IEEE Trans. Appl. Supercond. 1 3
[43] Makhlin Y, Schön G and Shnirman A 2001 Rev. Mod. Phys. 73 357
[44] Wang J S, Liang B L and Fan H Y 2008 Chin. Phys. B 17 697
[45] Wiggins S 1988 SIAM J. Appl. Math. 48 262
[46] Wolf A, Swift J B, Swinney H L and Vastano J A 1985 Physica D 16 285
[47] Sano M and Sawada Y 1985 Phys. Rev. Lett. 55 1082
[48] He T and Habib S 2013 Chaos 23 033123
[1] An incommensurate fractional discrete macroeconomic system: Bifurcation, chaos, and complexity
Abderrahmane Abbes, Adel Ouannas, and Nabil Shawagfeh. Chin. Phys. B, 2023, 32(3): 030203.
[2] Memristor hyperchaos in a generalized Kolmogorov-type system with extreme multistability
Xiaodong Jiao(焦晓东), Mingfeng Yuan(袁明峰), Jin Tao(陶金), Hao Sun(孙昊), Qinglin Sun(孙青林), and Zengqiang Chen(陈增强). Chin. Phys. B, 2023, 32(1): 010507.
[3] A novel algorithm to analyze the dynamics of digital chaotic maps in finite-precision domain
Chunlei Fan(范春雷) and Qun Ding(丁群). Chin. Phys. B, 2023, 32(1): 010501.
[4] Synchronously scrambled diffuse image encryption method based on a new cosine chaotic map
Xiaopeng Yan(闫晓鹏), Xingyuan Wang(王兴元), and Yongjin Xian(咸永锦). Chin. Phys. B, 2022, 31(8): 080504.
[5] Effect of pressure evolution on the formation enhancement in dual interacting vortex rings
Jianing Dong(董佳宁), Yang Xiang(向阳), Hong Liu(刘洪), and Suyang Qin(秦苏洋). Chin. Phys. B, 2022, 31(8): 084701.
[6] Multi-target ranging using an optical reservoir computing approach in the laterally coupled semiconductor lasers with self-feedback
Dong-Zhou Zhong(钟东洲), Zhe Xu(徐喆), Ya-Lan Hu(胡亚兰), Ke-Ke Zhao(赵可可), Jin-Bo Zhang(张金波),Peng Hou(侯鹏), Wan-An Deng(邓万安), and Jiang-Tao Xi(习江涛). Chin. Phys. B, 2022, 31(7): 074205.
[7] Complex dynamic behaviors in hyperbolic-type memristor-based cellular neural network
Ai-Xue Qi(齐爱学), Bin-Da Zhu(朱斌达), and Guang-Yi Wang(王光义). Chin. Phys. B, 2022, 31(2): 020502.
[8] Energy spreading, equipartition, and chaos in lattices with non-central forces
Arnold Ngapasare, Georgios Theocharis, Olivier Richoux, Vassos Achilleos, and Charalampos Skokos. Chin. Phys. B, 2022, 31(2): 020506.
[9] Bifurcation and dynamics in double-delayed Chua circuits with periodic perturbation
Wenjie Yang(杨文杰). Chin. Phys. B, 2022, 31(2): 020201.
[10] Resonance and antiresonance characteristics in linearly delayed Maryland model
Hsinchen Yu(于心澄), Dong Bai(柏栋), Peishan He(何佩珊), Xiaoping Zhang(张小平), Zhongzhou Ren(任中洲), and Qiang Zheng(郑强). Chin. Phys. B, 2022, 31(12): 120502.
[11] An image encryption algorithm based on spatiotemporal chaos and middle order traversal of a binary tree
Yining Su(苏怡宁), Xingyuan Wang(王兴元), and Shujuan Lin(林淑娟). Chin. Phys. B, 2022, 31(11): 110503.
[12] Nonlinear dynamics analysis of cluster-shaped conservative flows generated from a generalized thermostatted system
Yue Li(李月), Zengqiang Chen(陈增强), Zenghui Wang(王增会), and Shijian Cang(仓诗建). Chin. Phys. B, 2022, 31(1): 010501.
[13] Dynamics analysis in a tumor-immune system with chemotherapy
Hai-Ying Liu(刘海英), Hong-Li Yang(杨红丽), and Lian-Gui Yang(杨联贵). Chin. Phys. B, 2021, 30(5): 058201.
[14] Control of chaos in Frenkel-Kontorova model using reinforcement learning
You-Ming Lei(雷佑铭) and Yan-Yan Han(韩彦彦). Chin. Phys. B, 2021, 30(5): 050503.
[15] Resistance fluctuations in superconducting KxFe2-ySe2 single crystals studied by low-frequency noise spectroscopy
Hai Zi(子海), Yuan Yao(姚湲), Ming-Chong He(何明冲), Di Ke(可迪), Hong-Xing Zhan(詹红星), Yu-Qing Zhao(赵宇清), Hai-Hu Wen(闻海虎), and Cong Ren(任聪). Chin. Phys. B, 2021, 30(4): 047402.
No Suggested Reading articles found!