Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(3): 037803    DOI: 10.1088/1674-1056/25/3/037803
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Second harmonic generation of metal nanoparticles under tightly focused illumination

Jing-Wei Sun(孙经纬)1, Xiang-Hui Wang(王湘晖)1, Sheng-Jiang Chang(常胜江)1,Ming Zeng(曾明)2, Na Zhang(张娜)1
1. Institute of Modern Optics, Optical Information Science and Technology Key Laboratory of the Ministry of Education, Nankai University, Tianjin 300071, China;
2. School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072, China
Abstract  The near-field and far-field second harmonic (SH) responses of a metal spherical nanoparticle placed in the focal region of a highly focused beam are investigated by using the calculation model based on three-dimensional finite-difference time-domain (FDTD) method. The results show that off-axis backward-propagating SH response can be reinforced by tightly focusing, due to the increase of the relative magnitude of the longitudinal field component and the phase shift along the propagation direction.
Keywords:  second harmonic generation      metal nanoparticles      focused field  
Received:  21 September 2015      Revised:  10 October 2015      Accepted manuscript online: 
PACS:  78.67.Bf (Nanocrystals, nanoparticles, and nanoclusters)  
  42.65.Ky (Frequency conversion; harmonic generation, including higher-order harmonic generation)  
  42.25.Dd (Wave propagation in random media)  
  78.68.+m (Optical properties of surfaces)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61378005).
Corresponding Authors:  Xiang-Hui Wang     E-mail:  wangxianghui@nankai.edu.cn

Cite this article: 

Jing-Wei Sun(孙经纬), Xiang-Hui Wang(王湘晖), Sheng-Jiang Chang(常胜江),Ming Zeng(曾明), Na Zhang(张娜) Second harmonic generation of metal nanoparticles under tightly focused illumination 2016 Chin. Phys. B 25 037803

[1] Omidi M, Amoabediny G, Yazdian F and Habibi-Rezaei M 2015 Chin. Phys. Lett. 32 18701
[2] Wei X X, Cheng Y, Huo D, Zhang Y H, Wang J Z, Hu Y and Shi Y 2014 Acta Phys. Sin. 63 217802 (in Chinese)
[3] Palomba S and Novotny L 2009 Nano Lett. 9 3801
[4] Godefroy C and Adjouadi M 2000 Part. Part. Syst. Charact. 17 47
[5] Huang X, Qian W, El-Sayed I H and El-Sayed M A 2007 Lasers Surg. Med. 39 747
[6] Lermé J, Bonnet C, Broyer M, Cottancin E, Marhaba S and Pellarin M 2008 Phys. Rev. B 77 245406
[7] Kitamura K, Sakai K and Noda S 2011 Opt. Express 19 13750
[8] Mojarad N M, Sandoghdar V and Agio M 2008 J. Opt. Soc. Am. B 25 651
[9] Sancho-Parramon J 2011 Opt. Lett. 36 3527
[10] Kauranen M and Zayats A V 2012 Nat. Photonics 6 737
[11] Kim S, Jin J, Kim Y J, Park I Y, Kim Y and Kim S W 2008 Nature 453 757
[12] Boyd R W 2003 Nonlinear Optics (Academic press) p. 22
[13] Nili-Ahmadabadi H and Khorsandi A R 2011 Chin. Phys. B 20 054205
[14] Butet J, Thyagarajan K and Martin O J F 2013 Nano Lett. 13 1787
[15] Huo B Z, Wang X H, Chang S J, Zeng M and Zhao G H 2011 J. Opt. Soc. Am. B 28 2702
[16] Huo B Z, Wang X H, Chang S J and Zeng M 2012 J. Opt. Soc. Am. B 29 1631
[17] Martorell J, Vilaseca R and Corbalán R 1997 Phys. Rev. A 55 4520
[18] Challener W A, Sendur I K and Peng C 2003 Opt. Express 11 3160
[19] Shen H, Nguyen N, Gachet D, Maillard V, Toury T and Brasselet S 2013 Opt. Express 21 12318
[20] Richards B and Wolf E 1959 Proc. R. Soc. A 253 358
[21] Dadap J I, Shan J and Heinz T F 2004 J. Opt. Soc. Am. B 21 1328
[22] Guyot-Sionnest P, Chen W and Shen Y R 1986 Phys. Rev. B 33 8254
[23] Bachelier G, Butet J, Russier-Antoine I, Jonin C, Benichou E and Brevet P F 2010 Phys. Rev. B 82 235403
[24] Taflove A and Hagness S C 2000 Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House Publishers)
[25] Cheng J X and Xie X S 2002 J. Opt. Soc. Am. B 19 1604
[26] Johnson P B and Christy R W 1972 Phys. Rev. B 6 4370
[27] Cheng J X and Xie X S 2004 J. Phys. Chem. B 108 827
[28] Foreman M R, Sivan Y, Maier S A and Török P 2012 Phys. Rev. B 86 155441
[29] Finazzi M, Biagioni P, Celebrano M and Duó L 2007 Phys. Rev. B 76 125414
[1] Second harmonic generation from precise diamond blade diced ridge waveguides
Hui Xu(徐慧), Ziqi Li(李子琦), Chi Pang(逄驰), Rang Li(李让), Genglin Li(李庚霖), Sh. Akhmadaliev, Shengqiang Zhou(周生强), Qingming Lu(路庆明), Yuechen Jia(贾曰辰), and Feng Chen(陈峰). Chin. Phys. B, 2022, 31(9): 094209.
[2] Photon-interactions with perovskite oxides
Hongbao Yao(姚洪宝), Er-Jia Guo(郭尔佳), Chen Ge(葛琛), Can Wang(王灿), Guozhen Yang(杨国桢), and Kuijuan Jin(金奎娟). Chin. Phys. B, 2022, 31(8): 088106.
[3] Phase-matched second-harmonic generation in hybrid polymer-LN waveguides
Zijie Wang(王梓杰), Bodong Liu(刘伯东), Chunhua Wang(王春华), and Huakang Yu(虞华康). Chin. Phys. B, 2022, 31(10): 104208.
[4] Lattice plasmon mode excitation via near-field coupling
Yun Lin(林蕴), Shuo Shen(申烁), Xiang Gao(高祥), and Liancheng Wang(汪炼成). Chin. Phys. B, 2022, 31(1): 014214.
[5] Enhanced microwave absorption performance of MOF-derived hollow Zn-Co/C anchored on reduced graphene oxide
Yue Wang(王玥), Dawei He(何大伟), and Yongsheng Wang(王永生). Chin. Phys. B, 2021, 30(6): 067804.
[6] Modulation of the second-harmonic generation in MoS2 by graphene covering
Chunchun Wu(吴春春), Nianze Shang(尚念泽), Zixun Zhao(赵子荀), Zhihong Zhang(张智宏), Jing Liang(梁晶), Chang Liu(刘畅), Yonggang Zuo(左勇刚), Mingchao Ding(丁铭超), Jinhuan Wang(王金焕), Hao Hong(洪浩), Jie Xiong(熊杰), and Kaihui Liu(刘开辉). Chin. Phys. B, 2021, 30(2): 027803.
[7] Broadband and efficient second harmonic generation in LiNbO3-LiTaO3 composite ridge waveguides at telecom-band
Xin-Tong Zhang(张欣桐). Chin. Phys. B, 2021, 30(1): 014205.
[8] Generation of 15 W femtosecond laser pulse from a Kerr-lens mode-locked Yb: YAG thin-disk oscillator
Yingnan Peng(彭英楠), Jinwei Zhang(张金伟), Zhaohua Wang(王兆华), Jiangfeng Zhu(朱江峰), Dehua Li(李德华), Zhiyi Wei(魏志义). Chin. Phys. B, 2016, 25(9): 094207.
[9] Generation of femtosecond laser pulses at 396 nm in K3B6O10Cl crystal
Ning-Hua Zhang(张宁华), Hao Teng(滕浩), Hang-Dong Huang(黄杭东), Wen-Long Tian(田文龙), Jiang-Feng Zhu(朱江峰), Hong-Ping Wu(吴红萍), Shi-Lie Pan(潘世烈), Shao-Bo Fang(方少波), Zhi-Yi Wei(魏志义). Chin. Phys. B, 2016, 25(12): 124204.
[10] Tunable femtosecond near-infrared source based on a Yb:LYSO-laser-pumped optical parametric oscillator
Wen-Long Tian(田文龙), Zhao-Hua Wang(王兆华), Jiang-Feng Zhu(朱江峰), Zhi-Yi Wei(魏志义). Chin. Phys. B, 2016, 25(1): 014207.
[11] Second harmonic generation in inhomogeneous MgO:LiNbO3 waveguides
Li Guo-Hui(李国辉), Jiang Hai-Ling(蒋海灵), and Xu Xin-Ye(徐信业). Chin. Phys. B, 2011, 20(6): 064201.
[12] Properties of periodic multicrystal configurations in walk-off-compensating second harmonic generation of ultrashort pulses
Huang Jin-Zhe(黄金哲), Zhang Liu-Yang(张留洋), and Shen Tao(沈涛) . Chin. Phys. B, 2011, 20(4): 044206.
[13] Temperature-dependent second harmonic generation process based on an MgO-doped periodically poled lithium niobate waveguide
Shen Shi-Kui(沈世奎), Yang Ai-Ying(杨爱英), Zuo Lin(左林), Cui Jian-Min(崔建民), and Sun Yu-Nan(孙雨南) . Chin. Phys. B, 2011, 20(10): 104206.
[14] Study of narrow-band second harmonic generation from a broad-band fundamental pulse
Wen Jing(温静), Jiang Hong-Bing(蒋红兵), Deng Yong-Kai(邓勇开), and Gong Qi-Huang(龚旗煌). Chin. Phys. B, 2010, 19(12): 124213.
[15] Optical properties and frequency conversion with AgGaGeS$_4$ crystal
Ren De-Ming (任德明), Huang Jin-Zhe (黄金哲), Qu Yan-Chen (曲彦臣), Hu Xiao-Yong (胡孝勇), Andreev Yuri, Geiko Pavel, Badikov Valerii, Shaiduko Anna. Chin. Phys. B, 2004, 13(9): 1468-1473.
No Suggested Reading articles found!