Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(3): 038103    DOI: 10.1088/1674-1056/25/3/038103
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Unifying the crystallization behavior of hexagonal and square crystals with the phase-field-crystal model

Tao Yang(杨 涛), Zheng Chen(陈铮), Jing Zhang(张静), Yongxin Wang(王永新), Yanli Lu(卢艳丽)
State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China
Abstract  By employing the phase-field-crystal models, the atomic crystallization process of hexagonal and square crystals is investigated with the emphasis on the growth mechanism and morphological change. A unified regime describing the crystallization behavior of both crystals is obtained with the thermodynamic driving force varying. By increasing the driving force, both crystals (in the steady-state) transform from a faceted polygon to an apex-bulged polygon, and then into a symmetric dendrite. For the faceted polygon, the interface advances by a layer-by-layer (LL) mode while for the apex-bulged polygonal and the dendritic crystals, it first adopts the LL mode and then transits into the multi-layer (ML) mode in the later stage. In particular, a shift of the nucleation sites from the face center to the area around the crystal tips is detected in the early growth stage of both crystals and is rationalized in terms of the relation between the crystal size and the driving force distribution. Finally, a parameter characterizing the complex shape change of square crystal is introduced.
Keywords:  dendrite      faceted polygon      phase-field-crystal model  
Received:  07 September 2015      Revised:  13 November 2015      Accepted manuscript online: 
PACS:  81.10.Fq (Growth from melts; zone melting and refining)  
  64.70.dg (Crystallization of specific substances)  
  61.50.Ah (Theory of crystal structure, crystal symmetry; calculations and modeling)  
  07.05.Tp (Computer modeling and simulation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 54175378, 51474176, and 51274167), the Natural Science Foundation of Shaanxi Province, China (Grant No. 2014JM7261), and the Doctoral Foundation Program of Ministry of China (Grant No. 20136102120021).
Corresponding Authors:  Tao Yang     E-mail:  420929211@163.com

Cite this article: 

Tao Yang(杨 涛), Zheng Chen(陈铮), Jing Zhang(张静), Yongxin Wang(王永新), Yanli Lu(卢艳丽) Unifying the crystallization behavior of hexagonal and square crystals with the phase-field-crystal model 2016 Chin. Phys. B 25 038103

[1] Hoyt J J, Asta M and Karma A 2003 Mater. Sci. Eng. R 41 121
[2] Sunagawa I 1999 Forma 14 147
[3] Barrett J W, Garcke H and Nürnberg R 2012 Phys. Rev. E 86 011604
[4] Ferreiro V, Douglas J F, Warren J A and Karim A 2002 Phys. Rev. E 65 042802
[5] Chen Y, Qi X B, Li D Z, Kang X H and Xiao N M 2015 Comput. Mater. Sci. 104 155
[6] Stegemann B, Ritter C, Kaiser B and Rademann K 2004 J. Phys. Chem. B 108 14292
[7] Siegfried M J and Choi K S 2004 Adv. Mater. 16 1743
[8] Xu D and Xue D 2008 J. Cryst. Growth 310 1385
[9] Emmerich H, Löwen H, Wittkowski R, Gruhn T, Tóth G I, Tegze G and Gránásv L 2012 Adv. Phys. 61 665
[10] Tang S, Wang Z J, Guo Y L, Wang J C, Lu Y M and Zhou Y H 2012 Acta Mater. 60 5501
[11] Tang S, Yu Y M, Wang J C, Li J J, Wang Z J, Guo Y L and Zhou Y H 2014 Phys. Rev. E 89 012405
[12] Yang T, Zhang J, Long J, Long Q H and Chen Z 2014 Chin. Phys. B 23 088109
[13] Yang T, Chen Z, Zhang J, Dong W P and Wu L 2012 Chin. Phys. Lett. 29 078103
[14] Gao Y J, Huang L L, Deng Q Q, Lin K and Huang C G 2014 Front Mater. Sci. 8 185
[15] Elder K R and Grant M 2004 Phys. Rev. E 70 051605
[16] Greenwood M, Provatas N and Rottler J 2010 Phys. Rev. Lett. 105 045702
[17] Tegze G, Gránásy L, Tóth G I, Douglas J F and Pusztai T 2011 Soft Matter 7 1789
[18] Humadi H, Hoyt J J and Provatas N 2013 Phys. Rev. E 87 022404
[19] Skjeltorp A T 1987 Phys. Rev. Lett. 58 1444
[20] Taguchi K, Miyaji H, Izumi K, Hoshino A, Miyanoto Y and Kokawa R 2001 Polymer 42 7443
[21] Huang Y, Liu X B, Zhang H L, Zhu D S, Sun Y J, Yan S K, Wang J, Chen X F, Wan X H, Chen E Q and Zhou Q F 2006 Polymer 47 1217
[22] Ramanujan R V and Zhang Y R 2006 Appl. Phys. Lett. 88 182506
[1] Phase-field modeling of faceted growth in solidification of alloys
Hui Xing(邢辉), Qi An(安琪), Xianglei Dong(董祥雷), and Yongsheng Han(韩永生). Chin. Phys. B, 2022, 31(4): 048104.
[2] Elastic strain response in the modified phase-field-crystal model
Wenquan Zhou(周文权), Jincheng Wang(王锦程), Zhijun Wang(王志军), Yunhao Huang(黄赟浩), Can Guo(郭灿), Junjie Li(李俊杰), Yaolin Guo(郭耀麟). Chin. Phys. B, 2017, 26(9): 090702.
[3] Laser-induced fabrication of highly branched CuS nanocrystals with excellent near-infrared absorption properties
Ruyu Yang(杨汝雨), Zhongyi Zhang(张中义), Linlin Xu(徐林林), Shuang Li(李爽), Yang Jiao(焦扬), Hua Zhang(张华), Ming Chen(陈明). Chin. Phys. B, 2017, 26(7): 076102.
[4] Forming solid electrolyte interphase in situ in an ionic conductingLi1.5Al0.5Ge1.5(PO4)3-polypropylene (PP) basedseparator for Li-ion batteries
Jiao-Yang Wu(吴娇杨), Shi-Gang Ling(凌仕刚), Qi Yang(杨琪), Hong Li(李泓), Xiao-Xiong Xu(许晓雄), Li-Quan Chen(陈立泉). Chin. Phys. B, 2016, 25(7): 078204.
[5] Effects of physical parameters on the cell-to-dendrite transition in directional solidification
Wei Lei (魏雷), Lin Xin (林鑫), Wang Meng (王猛), Huang Wei-Dong (黄卫东). Chin. Phys. B, 2015, 24(7): 078108.
[6] Direct synthesis of graphene nanosheets support Pd nanodendrites for electrocatalytic formic acid oxidation
Yang Su-Dong (杨苏东), Chen Lin (陈琳). Chin. Phys. B, 2015, 24(11): 118104.
[7] Phase field crystal study of the crystallization modes within the two-phase region
Yang Tao (杨涛), Zhang Jing (张静), Long Jian (龙建), Long Qing-Hua (龙清华), Chen Zheng (陈铮). Chin. Phys. B, 2014, 23(8): 088109.
[8] Effect of buoyancy-driven convection on steady state dendritic growth in a binary alloy
Chen Ming-Wen (陈明文), Wang Bao (王宝), Wang Zi-Dong (王自东). Chin. Phys. B, 2013, 22(11): 116805.
[9] Settling velocity of equiaxed dendrites in a tube
Zhou Peng (周鹏), Wang Meng (王猛), Lin Xin (林鑫), Huang Wei-Dong (黄卫东). Chin. Phys. B, 2013, 22(1): 018101.
[10] Phase--field model of isothermal solidification with multiple grains growth
Feng Li(冯力), Wang Zhi-Ping(王智平), Zhu Chang-Sheng(朱昌盛), and Lu Yang(路阳). Chin. Phys. B, 2009, 18(5): 1985-1990.
[11] Solute distribution in KNbO3 melt-solution and its effect on dendrite growth during rapid solidification
Pan Xiu-Hong(潘秀红), Jin Wei-Qing(金蔚青), Liu Yan(刘岩), and Ai Fei(艾飞). Chin. Phys. B, 2009, 18(2): 699-703.
[12] Phase field simulation of the columnar dendritic growth and microsegregation in a binary alloy
Li Jun-Jie(李俊杰), Wang Jin-Cheng(王锦程), and Yang Gen-Cang(杨根仓). Chin. Phys. B, 2008, 17(9): 3516-3522.
[13] Synthesis and characterization of axially periodic Zn2SnO4 dendritic nanostructures
Shen Jun(沈俊), Ge Bing-Hui(葛炳辉), Chu Wei-Guo(褚卫国), Luo Shu-Dong(罗述东), Zhang Zeng-Xing(张增星), Liu Dong-Fang(刘东方), Liu Li-Feng(刘利峰), Ma Wen-Jun(马文君), Ren Yan(任彦), Xiang Yan-Juan(向彦娟), Wang Chao-Ying(王超英), Wang Gang(王刚), and Zhou Wei-Ya(周维亚) . Chin. Phys. B, 2008, 17(6): 2184-2190.
[14] Numerical simulation of dendrite growth and microsegregation formation of binary alloys during solidification process
Li Qiang (李强), Guo Qiao-Yi (郭巧懿), Li Rong-De (李荣德). Chin. Phys. B, 2006, 15(4): 778-791.
[15] Modelling the crystal growth in highly undercooled alloy melts by non-isothermal phase-field method
Li Mei-E (李梅娥), Yang Gen-Cang (杨根仓), Zhou Yao-He (周尧和). Chin. Phys. B, 2005, 14(4): 838-843.
No Suggested Reading articles found!