Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(2): 020201    DOI: 10.1088/1674-1056/25/2/020201
GENERAL Prev   Next  

Stochastic response of van der Pol oscillator with two kinds of fractional derivatives under Gaussian white noise excitation

Yong-Ge Yang(杨勇歌)1, Wei Xu(徐伟)1, Ya-Hui Sun(孙亚辉)2, Xu-Dong Gu(谷旭东)3
1. Department of Applied Mathematics, Northwestern Polytechnical University, Xi'an 710072, China;
2. State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, Xi'an 710049, China;
3. Department of Engineering Mechanics, Northwestern Polytechnical University, Xi'an 710129, China
Abstract  

This paper aims to investigate the stochastic response of the van der Pol (VDP) oscillator with two kinds of fractional derivatives under Gaussian white noise excitation. First, the fractional VDP oscillator is replaced by an equivalent VDP oscillator without fractional derivative terms by using the generalized harmonic balance technique. Then, the stochastic averaging method is applied to the equivalent VDP oscillator to obtain the analytical solution. Finally, the analytical solutions are validated by numerical results from the Monte Carlo simulation of the original fractional VDP oscillator. The numerical results not only demonstrate the accuracy of the proposed approach but also show that the fractional order, the fractional coefficient and the intensity of Gaussian white noise play important roles in the responses of the fractional VDP oscillator. An interesting phenomenon we found is that the effects of the fractional order of two kinds of fractional derivative items on the fractional stochastic systems are totally contrary.

Keywords:  stochastic averaging method      fractional derivative      van der Pol      equivalent stochastic system  
Received:  30 August 2015      Revised:  15 October 2015      Accepted manuscript online: 
PACS:  02.50.-r (Probability theory, stochastic processes, and statistics)  
  05.40.-a (Fluctuation phenomena, random processes, noise, and Brownian motion)  
  05.40.Ca (Noise)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11472212, 11532011, and 11502201).

Corresponding Authors:  Wei Xu     E-mail:  weixu@nwpu.edu.cn

Cite this article: 

Yong-Ge Yang(杨勇歌), Wei Xu(徐伟), Ya-Hui Sun(孙亚辉), Xu-Dong Gu(谷旭东) Stochastic response of van der Pol oscillator with two kinds of fractional derivatives under Gaussian white noise excitation 2016 Chin. Phys. B 25 020201

[1] Oldham K B and Spanier J 1974 The Fractional Calculus-Theory and Applications of Differentiation and Integration to Arbitrary Order (New York: Academic Press) p. 1
[2] Podlubny I 1999 Fractional Differential Equations (London: Academic Press) p. 10
[3] Shen Y J, Yang S P and Xing H J 2012 Acta Phys. Sin. 61 110505 (in Chinese)
[4] Shen Y J, Yang S P and Xing H J 2012 Acta Phys. Sin. 61 150503 (in Chinese)
[5] Wei P, Shen Y J and Yang S P 2014 Acta Phys. Sin. 63 010503 (in Chinese)
[6] Machado J T, Kiryakova V and Mainardi F 2011 Commun. Nonlinear Sci. Numer. Simul. 16 1140
[7] Li C P, Deng W H and Xu D 2006 Physica A 360 171
[8] Li C, Xu W, Wang L and Li D X 2013 Chin. Phys. B 22 110205
[9] Huang D M, Xu W, Xie W X and Han Q 2015 Chin. Phys. B 24 040502
[10] Huang Z L and Jin X L 2009 J. Sound Vib. 319 1121
[11] Chen L C, Wang W H, Li Z S and Zhu W Q 2013 Int. J. Non-Linear Mech. 48 44
[12] Chen L C and Zhu W Q 2009 Nonlinear Dyn. 56 231
[13] Chen L C and Zhu W Q 2011 Int. J. Non-Linear Mech. 46 1324
[14] Chen L C, Li Z S, Zhuang Q Q and Zhu W Q 2013 J. Vib. Control 19 2154
[15] Chen L C, Hu F and Zhu W Q 2013 Fract. Calc. Appl. Anal. 16 189
[16] Chen L C, Zhao T L, Li W and Zhao J 2015 Nonlinear Dyn., first online 5 September 2015
[17] Yang Y G, Xu W, Jia W T and Han Q 2015 Nonlinear Dyn. 79 139
[18] Yang Y G, Xu W, Gu X D and Sun Y H 2015 Chaos, Solitons and Fractals 77 190
[19] Zhang R R, Xu W, Yang G D and Han Q 2015 Chin. Phys. B 24 020204
[20] Spanos P and Zeldin B 1997 J. Eng. Mech. 123 290
[21] Agrawal O P 2004 J. Vib. Acoust. 126 561
[22] Xu Y, Li Y G and Liu D 2014 J. Comput. Nonlinear Dyn. 9 031015
[23] Xu Y, Li Y G, Liu D, Jia W T and Huang H 2013 Nonlinear Dyn. 74 745
[24] Liu D, Li J and Xu Y 2014 Commun. Nonlinear Sci. Numer. Simul. 19 3642
[25] Huang Z L, Jin X L, Lim C W and Wang Y 2010 Nonlinear Dyn. 59 339
[26] Shen Y J, Yang S P, Xing H J and Gao G S 2012 Commun. Nonlinear Sci. Numer. Simul. 17 3092
[27] Liao H 2014 Nonlinear Dyn. 79 1311
[28] Shen Y J, Yang S P and Sui C Y 2014 Chaos, Solitons and Fractals 67 94
[29] Liu X J, Hong L and Yang L X 2014 Abstr. Appl. Anal. 2014 835482
[30] Wei P, Shen Y J and Yang S P 2014 Acta Phys. Sin. 63 010503 (in Chinese)
[31] Diethelm K, Ford N J and Freed A D 2002 Nonlinear Dyn. 29 3
[1] Conformable fractional heat equation with fractional translation symmetry in both time and space
W S Chung, A Gungor, J Kříž, B C Lütfüoǧlu, and H Hassanabadi. Chin. Phys. B, 2023, 32(4): 040202.
[2] Stationary response of colored noise excited vibro-impact system
Jian-Long Wang(王剑龙), Xiao-Lei Leng(冷小磊), and Xian-Bin Liu(刘先斌). Chin. Phys. B, 2021, 30(6): 060501.
[3] A local refinement purely meshless scheme for time fractional nonlinear Schrödinger equation in irregular geometry region
Tao Jiang(蒋涛), Rong-Rong Jiang(蒋戎戎), Jin-Jing Huang(黄金晶), Jiu Ding(丁玖), and Jin-Lian Ren(任金莲). Chin. Phys. B, 2021, 30(2): 020202.
[4] Stochastic bifurcations of generalized Duffing-van der Pol system with fractional derivative under colored noise
Wei Li(李伟), Mei-Ting Zhang(张美婷), Jun-Feng Zhao(赵俊锋). Chin. Phys. B, 2017, 26(9): 090501.
[5] Non-Noether symmetries of Hamiltonian systems withconformable fractional derivatives
Lin-Li Wang (王琳莉) and Jing-Li Fu(傅景礼). Chin. Phys. B, 2016, 25(1): 014501.
[6] Response of a Duffing—Rayleigh system with a fractional derivative under Gaussian white noise excitation
Zhang Ran-Ran (张冉冉), Xu Wei (徐伟), Yang Gui-Dong (杨贵东), Han Qun (韩群). Chin. Phys. B, 2015, 24(2): 020204.
[7] Space–time fractional KdV–Burgers equation for dust acoustic shock waves in dusty plasma with non-thermal ions
Emad K. El-Shewy, Abeer A. Mahmoud, Ashraf M. Tawfik, Essam M. Abulwafa, Ahmed Elgarayhi. Chin. Phys. B, 2014, 23(7): 070505.
[8] Noether's theorems of a fractional Birkhoffian system within Riemann–Liouville derivatives
Zhou Yan (周燕), Zhang Yi (张毅). Chin. Phys. B, 2014, 23(12): 124502.
[9] Fractional cyclic integrals and Routh equations of fractional Lagrange system with combined Caputo derivatives
Wang Lin-Li (王琳莉), Fu Jing-Li (傅景礼). Chin. Phys. B, 2014, 23(12): 124501.
[10] Phase synchronization and synchronization frequency of two-coupled van der Pol oscillators with delayed coupling
Hossein Gholizade-Narm, Asad Azemi, Morteza Khademi. Chin. Phys. B, 2013, 22(7): 070502.
[11] The periodic oscillations in the ENSO recharge–discharge oscillator model
Zhang Wu-Fan (张妩帆), Zhao Qiang (赵强). Chin. Phys. B, 2013, 22(12): 120201.
[12] Fractional Cattaneo heat equation in a semi-infinite medium
Xu Huan-Ying (续焕英), Qi Hai-Tao (齐海涛), Jiang Xiao-Yun (蒋晓芸). Chin. Phys. B, 2013, 22(1): 014401.
[13] Fractional differential equations of motion in terms of combined Riemann–Liouville derivatives
Zhang Yi (张毅). Chin. Phys. B, 2012, 21(8): 084502.
[14] Hamilton formalism and Noether symmetry for mechanico–electrical systems with fractional derivatives
Zhang Shi-Hua (张世华), Chen Ben-Yong (陈本永), Fu Jing-Li (傅景礼). Chin. Phys. B, 2012, 21(10): 100202.
[15] Ion-acoustic waves in plasma of warm ions and isothermal electrons using time-fractional KdV equation
Sayed A. El-Wakil, Essam M. Abulwafa, Emad K. El-Shewy, and Abeer A. Mahmoud. Chin. Phys. B, 2011, 20(4): 040508.
No Suggested Reading articles found!