Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(12): 120201    DOI: 10.1088/1674-1056/22/12/120201
GENERAL   Next  

The periodic oscillations in the ENSO recharge–discharge oscillator model

Zhang Wu-Fan (张妩帆), Zhao Qiang (赵强)
School of Physics, Peking University, Beijing 100871, China
Abstract  A class of recharge–discharge oscillator model for the El Niño/Southern Oscillation (ENSO) is considered. A stable limit cycle is obtained by transforming the ENSO model into the van der Pol-Duffing equation. We proved that there exists periodic oscillations in the ENSO recharge–discharge oscillator model.
Keywords:  ENSO model      van der Pol-Duffing equation      limit cycle  
Received:  09 April 2013      Revised:  17 May 2013      Accepted manuscript online: 
PACS:  02.30.Jr (Partial differential equations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 40975028 and 41175052).
Corresponding Authors:  Zhang Wu-Fan     E-mail:  zwf@pku.edu.cn

Cite this article: 

Zhang Wu-Fan (张妩帆), Zhao Qiang (赵强) The periodic oscillations in the ENSO recharge–discharge oscillator model 2013 Chin. Phys. B 22 120201

[1] Philander S G 1990 El Niño, La Niña, and the Southern Oscillation (London: Academic Press)
[2] Clarke A J 2008 An Introduction to the Dynamics of El Niño and the Southern Oscillation (London: Academic Press)
[3] Sarachik E S and Cane M A 2010 The El Niñ-Southern Oscillation Phenomenon (Cambridge: Cambridge University Press)
[4] McPhaden M J, Zebiak S E and Glantz M H 2006 Science 314 1740
[5] Lin J L 2009 Chin. Ann. Math. B 30B 715
[6] Wang C Z 2001 Adv. Atmos. Sci. 18 674
[7] Zhu M, Lin W T, Lin Y H and Mo J Q 2011 Acta Phys. Sin. 60 030204 (in Chinese)
[8] Mo J Q, Lin Y H and Lin W T 2010 Acta Phys. Sin. 59 6707 (in Chinese)
[9] Zhao Q, Liu S K and Liu S D 2012 Acta Phys. Sin. 61 220201 (in Chinese)
[10] Li X J 2010 Chin. Phys. B 19 020202
[11] Wang W, Xu Y and Lu S P 2011 Acta Phys. Sin. 60 030205 (in Chinese)
[12] Cao X Q, Song J Q, Zhang W M, Zhao J and Zhu X Q 2012 Acta Phys. Sin. 61 030203 (in Chinese)
[13] Jin F F 1997 J. Atmos. Sci. 54 811
[14] Zhang J Y and Feng B Y 2000 Geometric Theory of Ordinary Differential Equations with Branch (Beijing: Peking University Press)
[15] Ding T R and Li T Z 2004 Ordinary Differential Equations Tutorial (Beijing: Higher Education Press)
[16] Lu Q S 1995 Bifurcation and Singularity (Shanghai: Shanghai Science and Technology Education Press)
[17] Liu S K and Liu S D 2012 Nonlinear Equations in Physics, 2nd edn. (Beijing: Peking University Press)
[1] Nonlinear dynamics of a classical rotating pendulum system with multiple excitations
Ning Han(韩宁) and Pei-Pei Lu(鲁佩佩). Chin. Phys. B, 2020, 29(11): 110502.
[2] Reversed rotation of limit cycle oscillation and dynamics of low-intermediate-high confinement transition
Dan-Dan Cao(曹丹丹), Feng Wan(弯峰), Ya-Juan Hou(侯雅娟), Hai-Bo Sang(桑海波), Bai-Song Xie(谢柏松). Chin. Phys. B, 2018, 27(6): 065201.
[3] Nonlinearity and periodic solution of a standard-beam balance oscillation system
Li Shi-Song(李世松), Lan Jiang(兰江), Han Bing(韩冰), Tan Hong(谭红), and Li Zheng-Kun(李正坤) . Chin. Phys. B, 2012, 21(6): 064601.
[4] The periodic solution to the model for the El Ni?o-Southern oscillation
Li Xiao-Jing(李晓静). Chin. Phys. B, 2010, 19(3): 030201.
[5] Amplitude control of limit cycle in a van der Pol--Duffing system
Ouyang Ke-Jian(欧阳克俭), Tang Jia-Shi(唐驾时), and Liang Cui-Xiang(梁翠香). Chin. Phys. B, 2009, 18(11): 4748-4753.
[6] Homotopic mapping solution of an oscillator for the El Niño La Niña-southern oscillation
Zhou Xian-Chun(周先春), Lin Yi-Hua(林一骅), Lin Wan-Tao(林万涛), and Mo Jia-Qi(莫嘉琪). Chin. Phys. B, 2009, 18(11): 4603-4607.
[7] Closed orbits and limit cycles of second-order autonomous Birkhoff systems
Chen Xiang-Wei (陈向炜). Chin. Phys. B, 2003, 12(6): 586-589.
No Suggested Reading articles found!