Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(1): 018709    DOI: 10.1088/1674-1056/25/1/018709
Special Issue: TOPICAL REVIEW — 8th IUPAP International Conference on Biological Physics
TOPICAL REVIEW—8th IUPAP International Conference on Biological Physics Prev   Next  

In vitro three-dimensional cancer metastasis modeling: Past, present, and future

Wei-jing Han(韩伟静)1, Wei Yuan(袁伟)2, Jiang-rui Zhu(朱江瑞)1, Qihui Fan(樊琪慧)1, Junle Qu(屈军乐)2, Li-yu Liu(刘雳宇)1, on behalf of the U.S.--China Physical Sciences-Oncology Alliance
1. Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2. Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060, China
Abstract  Metastasis is the leading cause of most cancer deaths, as opposed to dysregulated cell growth of the primary tumor. Molecular mechanisms of metastasis have been studied for decades and the findings have evolved our understanding of the progression of malignancy. However, most of the molecular mechanisms fail to address the causes of cancer and its evolutionary origin, demonstrating an inability to find a solution for complete cure of cancer. After being a neglected area of tumor biology for quite some time, recently several studies have focused on the impact of the tumor microenvironment on cancer growth. The importance of the tumor microenvironment is gradually gaining attention, particularly from the perspective of biophysics. In vitro three-dimensional (3-D) metastatic models are an indispensable platform for investigating the tumor microenvironment, as they mimic the in vivo tumor tissue. In 3-D metastatic in vitro models, static factors such as the mechanical properties, biochemical factors, as well as dynamic factors such as cell-cell, cell-ECM interactions, and fluid shear stress can be studied quantitatively. With increasing focus on basic cancer research and drug development, the in vitro 3-D models offer unique advantages in fundamental and clinical biomedical studies.
Keywords:  cancer metastasis      microfluidic chip      three-dimensional in vitro model      chemotaxis  
Received:  02 July 2015      Revised:  05 August 2015      Accepted manuscript online: 
PACS:  87.19.xj (Cancer)  
  87.17.Uv (Biotechnology of cell processes)  
  87.85.dh (Cells on a chip)  
  87.17.Jj (Cell locomotion, chemotaxis)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2013CB837200), the National Natural Science Foundation of China (Grant No. 11474345), and the Beijing Natural Science Foundation, China (Grant No. 7154221).
Corresponding Authors:  Wei-jing Han, Wei Yuan, Li-yu Liu     E-mail:  liu@iphy.ac.cn

Cite this article: 

Wei-jing Han(韩伟静), Wei Yuan(袁伟), Jiang-rui Zhu(朱江瑞), Qihui Fan(樊琪慧), Junle Qu(屈军乐), Li-yu Liu(刘雳宇), on behalf of the U.S.--China Physical Sciences-Oncology Alliance In vitro three-dimensional cancer metastasis modeling: Past, present, and future 2016 Chin. Phys. B 25 018709

[1] Valastyan S and Weinberg R A 2011 Cell 147 275
[2] Wirtz D, Konstantopoulos K and Searson P C 2011 Nat. Rev. Cancer 11 512
[3] Swartz M A and Fleury M E 2007 Annu. Rev. Biomed. Eng. 9 229
[4] Koumoutsakos P, Pivkin I and Milde F 2013 Annu. Rev. Fluid Mech. 45 325
[5] Zhang Z and Nagrath S 2013 Biomed. Microdevices 15 595
[6] Caron M M, Emans P J, Coolsen M M, Voss L, Surtel D A, Cremers A, van Rhijn L W and Welting T J 2012 Osteoarthritis Cartilage 20 1170
[7] Wenner W 1998 Grand Valley Rev. 18 6
[8] Page H, Flood P and Reynaud E G 2013 Cell Tissue Res. 352 123
[9] Baker B M and Chen C S 2012 J. Cell. Sci. 125 3015
[10] Gurski L A, Petrelli N J, Jia X and Farach-Carson M C 2010 Oncology Issues 25 20
[11] Sung K E, Su X, Berthier E, Pehlke C, Friedl A and Beebe D J 2013 PloS One 8 e76373
[12] Meng X, Leslie P, Zhang Y and Dong J 2014 Springer Plus 3 80
[13] Pampaloni F, Reynaud E G and Stelzer E H K 2007 Nat. Rev. Mol. Cell Biol. 8 839
[14] Meyer A S, Hughes-Alford S K, Kay J E, Castillo A, Wells A, Gertler F B and Lauffenburger D A 2012 J. Cell Biol. 197 721
[15] Liu W, Bergenstock M K, Lau W, Sun W and Liu Q 2008 Proceedings of the 2nd World Congress on Tissue Engineering and Regenerative Medicine 2008
[16] Corall S, Haraszti T, Bartoschik T, Spatz J P, Ludwig T and Cavalcanti-Adam E A 2014 Comput. Mech. 53 499
[17] Wu J, Voytik-Harbin S L, Filmer D L, Hoffman C M, Yuan B, Chiang C S, Sturgis J and Robinson J P Proc. SPIE 4621 (Three-Dimensional and Multidimensional Microscopy: Image Acquisition and Processing IX, 52, May 17, 2002)
[18] Fischbach C, Kong H J, Hsiong S X, Evangelista M B, Yuen W and Mooney D J 2009 Proc. Natl. Acad. Sci. USA 106 399
[19] Doyle A D, Petrie R J, Kutys M L and Yamada K M 2013 Curr. Opin. Cell Biol. 25 642
[20] Tibbitt M W and Anseth K S 2009 Biotechnol. Bioeng. 103 655
[21] Longati P, Jia X, Eimer J, Wagman A, Witt M R, Rehnmark S, Verbeke C, Toftgard R, Lohr M and Heuchel R L 2013 BMC Cancer 13 95
[22] Li L and Lu Y 2011 J. Cancer 2 458
[23] Fallica B, Maffei J S, Villa S, Makin G and Zaman M 2012 PloS One 7 e48024
[24] Stegemann J P, Hong H and Nerem R M 2005 J. Appl. Physiol. 98 2321
[25] Richard J and Shemin S F 2012 Regen. Med. 2 1
[26] Wang L and Carrier R L 2011 Biomimetic Topography: Bioinspired Cell Culture Substrates and Scaffolds, in: Advances in Biomimetics (INTECH Open Access Publisher)
[27] Rhee S 2009 Exp. Mol. Med. 41 858
[28] Pathak A and Kumar S 2011 Integr. Biol. (Camb) 3 267
[29] Lee P, Lin R, Moon J and Lee L P 2006 Biomed. Microdevices 8 35
[30] Gomez-Sjoberg R, Leyrat A A, Houseman B T, Shokat K and Quake S R 2010 Anal. Chem. 82 35
[31] Sung K E, Su G, Pehlke C, Trier S M, Eliceiri K W, Keely P J, Friedl A and Beebe D J 2009 Biomaterials 30 4833
[32] Shiwa T, Uchida H and Tsukada K 2012 Am. J. Biomed. Eng. 2 175
[33] Saadi W, Wang S J, Lin F and Jeon N L 2006 Biomed. Microdevices 8 109
[34] Kim B J, Hannanta-anan P, Chau M, Kim Y S, Swartz M A and Wu M 2013 PloS One 8 e68422
[35] Fischer R S, Myers K A, Gardel M L and Waterman C M 2012 Nat. Protoc. 7 2056
[36] Cukierman E, Pankov R and Yamada K M 2002 Curr. Opin. Cell Biol. 14 633
[37] Yamada S, Yamamoto K, Ikeda T, Yanagiguchi K and Hayashi Y 2014 Biomed. Res. Int. 2014 302932
[38] Norman J J, Collins J M, Sharma S, Russell B and Desai T A 2008 Tissue Engineering Part A 14 379
[39] Wells R G 2008 Hepatology 47 1394
[40] Artym V V, Yamada K M and Mueller S C 2009 Extracellular Matrix Protocols, Volume 522$ of the Series Methods in Molecular Biology pp. 211-219
[41] Frantz C, Stewart K M and Weaver V M 2010 J. Cell. Sci. 123 4195
[42] LaPlaca M C, Vernekar V N, Shoemaker J T and Cullen D K 2010 Three-dimensional Neuronal Cultures Methods in Bioengineering: 3D Tissue Engineering (Norwood: MA: Artech House) pp. 187-204
[43] Ebong I M 2007 Three-dimensional Extracellular Matrix Hydrogel Environments for Embryonic Stem Cell Growth (Georgia: Georgia Institute of Technology)
[44] Dewitt D D, Kaszuba S N, Thompson D M and Stegemann J P 2009 Tissue Engineering Part A 15 2785
[45] Ulrich T A, Jain A, Tanner K, MacKay J L and Kumar S 2010 Biomaterials 31 1875
[46] Schedin P and Keely P J 2011 Cold Spring Harb. Perspect. Biol. 3 a003228
[47] Ward M, McCann C, de Wulf M, Wu J Y and Rao Y 2003 J. Neurosci. 23 5170
[48] Nemir S and West J L 2010 Ann. Biomed. Eng. 38 2
[49] Kong Y P, Carrion B, Singh R K and Putnam A J 2013 Sci. Rep. 3 3474
[50] Rehfeldt F, Engler A J, Eckhardt A, Ahmed F and Discher D E 2007 Adv. Drug. Deliv. Rev. 59 1329
[51] Trappmann B and Chen C S 2013 Curr. Opin. Biotechnol. 24 948
[52] Raeber G P, Lutolf M P and Hubbell J A 2005 Biophys. J. 89 1374
[53] Dikovsky D, Bianco-Peled H and Seliktar D 2008 Biophys. J. 94 2914
[54] Sharma S, Cross S E, French S, Gonzalez O, Petzold O, Baker W, Walczak W, Yongsunthon R, Baker D and Gimzewski J K 2009 J. Scanning Probe. Microscopy 4 7
[55] Raman D, Baugher P J, Thu Y M and Richmond A 2007 Cancer Lett. 256 137
[56] Fosslien E 2008 Annu. Clin. Lab. Sci. 38 307
[57] Strieter R M 2001 Nat. Immunol. 2 285
[58] Kakinuma T and Hwang S T 2006 J. Leukoc. Biol. 79 639
[59] Anderson A R A, Chaplain M A J, García-Reimbert C and Vargas C A 2000 Math. Comput. Model 32 1141
[60] Iijima M and Devreotes P 2002 Cell 109 599
[61] Brown C E, Vishwanath R P, Aguilar B, Starr R, Najbauer J, Aboody K S and Jensen M C 2007 J. Immunol. 179 3332
[62] Aldinucci D and Colombatti A 2014 Mediators Inflamm. 2014 292376
[63] Richmond A 2008 Clin. Cancer Res. 14 621
[64] Mantovani A, Savino B, Locati M, Zammataro L, Allavena P and Bonecchi R 2010 Cytokine Growth Factor Rev. 21 27
[65] Engl T, Relja B, Marian D, Blumenberg C, Muller I, Beecken W D, Jones J, Ringel E M, Bereiter-Hahn J and Jonas D 2006 Neoplasia 8 290
[66] Brychtova V, Vojtesek B and Hrstka R 2011 Cancer Lett. 304 1
[67] Rao S, Tata U, Lin V and Chiao J C 2014 Micromachines 5 13
[68] Gerweck L E and Seetharaman K 1996 Cancer Res. 56 1194
[69] Paradise R K, Whitfield M J, Lauffenburger D A and van Vliet K J 2013 Exp. Cell Res. 319 487
[70] von Sengbusch A, Gassmann P, Fisch K M, Enns A, Nicolson G L and Haier J 2005 Am. J. Pathol. 166 585
[71] Haier J and Nicolson G L 1999 Clin. Exp. Metastasis 17 713
[72] Mitchell M J and King M R 2013 Front. Oncol. 3 44
[73] Lee J S, Panorchan P, Hale C M, Khatau S B, Kole T P, Tseng Y and Wirtz D 2006 J. Cell Sci. 119 1760
[74] Schedin P and Keely P J 2011 CSH Perspect Biol. 3 a003228
[75] Wozniak M A, Desai R, Solski P A, Der C J and Keely P J 2003 J. Cell Biol. 163 583
[76] Paszek M J, Zahir N, Johnson K R, Lakins J N, Rozenberg G I, Gefen A, Reinhart-King C A, Margulies S S, Dembo M and Boettiger D 2005 Cancer Cell 8 241
[77] Provenzano P P, Inman D R, Eliceiri K W and Keely P J 2009 Oncogene 28 4326
[78] Chen C S, Mrksich M, Huang S, Whitesides G M and Ingber D E 1997 Science 276 1425
[79] Wang H B, Dembo M, Hanks S K and Wang Y 2001 Proc. Natl. Acad. Sci. USA 98 11295
[80] Discher D E, Janmey P and Wang Y 2005 Science 310 1139
[81] Thiery J P 2002 Nat. Rev. Cancer 2 442
[82] Friedl P and Wolf K 2003 Nat. Rev. Cancer 3 362
[83] Friedl P 2004 Curr. Opin. Cell Biol. 16 14
[84] Ridley A J, Schwartz M A, Burridge K, Firtel R A, Ginsberg M H, Borisy G, Parsons J T and Horwitz A R 2003 Science 302 1704
[85] De Wever O, Nguyen Q D, van Hoorde L, Bracke M, Bruyneel E, Gespach C and Mareel M 2004 FASEB J. 18 1016
[86] Vial E, Sahai E and Marshall C J 2003 Cancer. Cell 4 67
[87] Etienne-Manneville S and Hall A 2001 Cell 106 489
[88] Vicker M G 2002 FEBS Lett. 510 5
[89] Sahai E 2005 Curr. Opin. Genet. Dev. 15 87
[90] Roussos E T, Balsamo M, Alford S K, Wyckoff J B, Gligorijevic B, Wang Y, Pozzuto M, Stobezki R, Goswami S and Segall J E 2011 J. Cell Sci. 124 2120
[91] Friedl P, Locker J, Sahai E and Segall J E 2012 Nat. Cell Biol. 14 777
[92] Nabeshima K, Inoue T, Shimao Y and Sameshima T 2002 Pathol. Int. 52 255
[93] Hegerfeldt Y, Tusch M, Brocker E B and Friedl P 2002 Cancer Res. 62 2125
[94] Hidalgo-Carcedo C, Hooper S, Chaudhry S I, Williamson P, Harrington K, Leitinger B and Sahai E 2011 Nat. Cell Biol. 13 49
[95] Ewald A J, Huebner R J, Palsdottir H, Lee J K, Perez M J, Jorgens D M, Tauscher A N, Cheung K J, Werb Z and Auer M 2012 J. Cell Sci. 125 2638
[96] Zhu J, Liang L, Jiao Y and Liu L 2015 PloS One 10 e0118058
[97] Baker B M and Chen C S 2012 J. Cell Sci. 125 3015
[98] Hutmacher D W 2010 Nat. Methods 9 90
[99] Hutmacher D W, Horch R E, Loessner D, et al. 2009 J. Cell Mol. Med. 13 1417
[100] Seliktar D 2012 Science 336 1124
[101] Sharpe J, Ahlgren U, Perry P, et al. 2002 Science 296 541
[102] Verveer P J, Swoger J, Pampaloni F, Greger K, Marcello M, Stelzer E H 2007 Nat. Methods 4 311
[103] Huisken J, Swoger J, Del Bene F, Wittbrodt J, Stelzer E H 2004 Science 305 1007
[104] Legant W R, Miller J S, Blakely B L, Cohen D M, Genin G M and Chen C S 2010 Nat. Methods 7 969
[105] Bloom R J, George J P, Celedon A, Sun S X and Wirtz D 2008 Biophys. J. 95 4077
[106] Huh D, Hamilton G A and Ingber D E 2011 Trends. Cell Biol. 21 745
[107] Mironov V, Boland T, Trusk T, Forgacs G and Markwald R R 2003 Trends. Biotechnol. 21 157
[108] Othon C M, Wu X, Anders J J and Ringeisen B R 2008 Biomed. Mater. 3 034101
[1] Effect of external electric field on the terahertz transmission characteristics of electrolyte solutions
Jia-Hui Wang(王佳慧), Guo-Yang Wang(王国阳), Xin Liu(刘欣), Si-Yu Shao(邵思雨), Hai-Yun Huang(黄海云), Chen-Xin Ding(丁晨鑫), Bo Su(苏波), and Cun-Lin Zhang(张存林). Chin. Phys. B, 2021, 30(11): 110204.
[2] Quantitative heterogeneity and subgroup classification based on motility of breast cancer cells
Ling Xiong(熊玲), Yanping Liu(刘艳平), Ruchuan Liu(刘如川), Wei Yuan(袁伟), Gao Wang(王高), Yi He(何益), Jianwei Shuai(帅建伟), Yang Jiao(焦阳), Xixiang Zhang(张溪祥), Weijing Han(韩伟静), Junle Qu(屈军乐), Liyu Liu(刘雳宇). Chin. Phys. B, 2019, 28(10): 108701.
[3] A population-level model from the microscopic dynamics in Escherichia coli chemotaxis via Langevin approximation
He Zhuo-Ran (贺卓然), Wu Tai-Lin (吴泰霖), Ouyang Qi (欧阳颀), Tu Yu-Hai (涂豫海). Chin. Phys. B, 2012, 21(9): 098701.
No Suggested Reading articles found!