INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Al-doping influence on crystal growth of Ni-Al alloy: Experimental testing of a theoretical model |
Rong Xi-Ming (荣曦明)a, Chen Jun (陈骏)b c, Li Jing-Tian (李菁田)b c, Zhuang Jun (庄军)a, Ning Xi-Jing (宁西京)b c |
a Department of Optical Science and Engineering, Fudan University, Shanghai 200433, China;
b Institute of Modern Physics, Fudan University, Shanghai 200433, China;
c Applied Ion Beam Physics Laboratory, Key Laboratory of the Ministry of Education, Fudan University, Shanghai 200433, China |
|
|
Abstract Recently, a condensing potential model was developed to evaluate the crystallization ability of bulk materials [Ye X X, Ming C, Hu Y C and Ning X J 2009 J. Chem. Phys. 130 164711 and Peng K, Ming C, Ye X X, Zhang W X, Zhuang J and Ning X J 2011 Chem. Phys. Lett. 501 330], showing that the best temperature for single crystal growth is about 0.6 Tm, where Tm is the melting temperature, and for Ni-Al alloy, more than 6 wt% of Al-doping will badly reduce the crystallization ability. In order to verify these predictions, we fabricated Ni-Al films with different concentrations of Al on Si substrates at room temperature by pulsed laser deposition, and post-annealed the films at 833, 933, 1033 (~ 0.6 Tm), 1133, and 1233 K in vacuum furnace, respectively. The x-ray diffraction spectra show that annealing at 0.6 Tm is indeed best for larger crystal grain formation, and the film crystallization ability remarkably declines with more than 6-wt% Al doping.
|
Received: 27 May 2015
Revised: 12 August 2015
Accepted manuscript online:
|
PACS:
|
87.15.nt
|
(Crystallization)
|
|
81.15.Fg
|
(Pulsed laser ablation deposition)
|
|
61.05.cp
|
(X-ray diffraction)
|
|
Fund: Project supported by the Specialized Research Fund for the Doctoral Program of Higher Education, China (Grant No. 20130071110018) and the National Natural Science Foundation of China (Grant No. 11274073). |
Corresponding Authors:
Ning Xi-Jing
E-mail: xjning@fudan.edu.cn
|
Cite this article:
Rong Xi-Ming (荣曦明), Chen Jun (陈骏), Li Jing-Tian (李菁田), Zhuang Jun (庄军), Ning Xi-Jing (宁西京) Al-doping influence on crystal growth of Ni-Al alloy: Experimental testing of a theoretical model 2015 Chin. Phys. B 24 128706
|
[1] |
Li Y D, Qian Y T, Liao H W, Ding Y, Yang L, Xu C Y, Li F Q and Zhou G 1998 Science 281 246
|
[2] |
Service R F 1997 Science 275 1878
|
[3] |
Look D C 2001 Mater. Sci. Eng. B 80 383
|
[4] |
Kumar K, Ramamoorthy K, Chandramohan R and Sankaranarayanan K 2006 Cryst. Res. Technol. 41 217
|
[5] |
Isberg J, Hammersberg J, Johansson E, Wikstrom T, Twitchen D J, Whitehead A J, Coe S E and Scarsbrook G A 2002 Science 297 1670
|
[6] |
Lou Z S, Chen Q W, Zhang Y F, Wang W and Qian Y T 2003 J. Am. Chem. Soc. 125 9302
|
[7] |
Rappaz M and Kurz W 1995 Nature 375 103
|
[8] |
Gránásy L, Börzsönyi T and Pusztai T 2002 Phys. Rev. Lett. 88 206105
|
[9] |
Hoyt J J, Asta M and Karma A 2003 Mater. Sci. Eng. R 41 121
|
[10] |
Haxhimali T, Karma A, Gonzales F and Rappaz M 2006 Nat. Mater. 5 660
|
[11] |
Fatterbert J L, Wickett M E and Turchi P E A 2014 Acta Mater. 62 89
|
[12] |
Lin G, Bao J, Xu Z, Tartakovsky A M and Henager C H Jr 2014 Commun. Comput. Phys. 15 76
|
[13] |
Burke E, Broughton J Q and Gilmer G H 1988 J. Chem. Phys. 89 1030
|
[14] |
Celik F A and Kazanc S 2013 Physica B 409 63
|
[15] |
Baras F and Politano O 2011 Phys. Rev. B 84 024113
|
[16] |
Michel K J and Wolverton C 2014 Comput. Phys. Commun. 185 1389
|
[17] |
Neyts E C, van Duin A C T and Bogaerts A 2011 J. Am. Chem. Soc. 133 17225
|
[18] |
Neyts E C, Shibuta Y, van Duin A C T and Bogaerts A 2010 ACS Nano 4 6665
|
[19] |
Ye X X, Ming C, Hu Y C and Ning X J 2009 J. Chem. Phys. 130 164711
|
[20] |
Ye X X, Ming C, Hu Y C and Ning X J 2009 Acta Phys. Sin. 58 3293 (in Chinese)
|
[21] |
Peng K, Ming C, Ye X X, Zhang W X, Zhuang J and Ning X J 2011 Chem. Phys. Lett. 501 330
|
[22] |
Peng K, Ming C, Ye X X, Zhang W X, Zhuang J and Ning X J 2010 Acta Phys. Sin. 59 7245 (in Chinese)
|
[23] |
Colgan E G and Mayer J W 1986 Mater. Res. Soc. Symp. Proc. 54 121
|
[24] |
Colgan E G, Gambinob J P, and Cunninghamb B 1996 Mater. Chem. Phys. 46 209
|
[25] |
Takeyama M and Liu C T 1998 J. Mater. Res. 3 665
|
[26] |
Takehira K, Shishido T, Wang P, Kosaka T and Takaki K 2004 J. Catal. 221 43
|
[27] |
Comas J, Mariño F, Laborde M and Amadeo N 2004 Chem. Eng. J. 98 61
|
[28] |
Reshetenko T V, Avdeeva L B, Ismagilov Z R, Chuvilin A L and Ushakov V A 2003 Appl. Catal. A 247 51
|
[29] |
Dissanayake D, Rosynek M P, Kharas K C C and Lunsford J H 1991 J. Catal. 132 117
|
[30] |
Ng H P, Meng X K and Ngan A H W 1998 Scr. Mater. 39 1737
|
[31] |
Murakumo T, Kobayashi T, Koizumi Y and Harada H 2004 Acta Mater. 52 3737
|
[32] |
Luo Z P, Wu Z T and Miller D J 2003 Mater. Sci. Eng. A 354 358
|
[33] |
Pierre C and Tasadduq K 1999 Aerosp. Sci. Technol. 3 513
|
[34] |
Stoloff N S, Liu C T and Deevi S C 2000 Intermetallics 8 1313
|
[35] |
Kearsey R M, Beddoes J C, Jones P and Au P 2004 Intermetallics 12 903
|
[36] |
Zeng Q, Ma S W, Zheng Y R, Liu S Z and Zhai T 2009 J. Alloys Compd. 480 987
|
[37] |
Asteman H, Hartnagel W and Jakobi D 2013 Oxid. Met. 80 3
|
[38] |
Singh R K and Narayan J 1990 Phys. Rev. B 41 8843
|
[39] |
Singh R K, Narayan J, Singh A K and Krishnaswamy J 1989 Appl. Phys. Lett. 54 2271
|
[40] |
Narayan J, Biunno N, Singh R K, Auchiello O and Holland O W 1987 Appl. Phys. Lett. 51 1845
|
[41] |
Wang L, Liu Y C, Xu C S, Qiu Y Q, Zhao L and Rong X M 2009 J. Phys. D: Appl. Phys. 42 035307
|
[42] |
Xu W H, Meng X K, Ngan A H W, Chen X Y and Liu Z G 2000 Mater. Lett. 44 314
|
[43] |
Qiu C C, Zhang X, Zhou Q F and Wu X J 2013 Physics 42 873 (in Chinese)
|
[44] |
Wu J B, Zhou M J, Wang X M, Wang Y Y, Xiong Z W, Cheng X L, Casanove M J, Gater C and Wu W D 2014 Acta Phys. Sin. 63 166801 (in Chinese)
|
[45] |
Zhang F, Lin Y B, Wu H, Mian Q, Gong J J, Chen J P, Wu S J, Zeng M, Gao X S and Liu J M 2014 Chin. Phys. B 23 027702
|
[46] |
Ran C J, Yang H L, Wang Y K, Hassan F M, Zhou L G, Xu X G and Jiang Y 2013 Chin. Phys. B 22 067503
|
[47] |
Ding Y H, Wang Y Q, Cai R S, Chen Y Z and Sun J R 2012 Chin. Phys. B 21 087502
|
[48] |
Chen S S, Wang S F, Liu F Q, Yan G Y, Chen J C, Wang J L, Yu W and Fu G S 2012 Chin. Phys. B 21 087306
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|