Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(12): 128707    DOI: 10.1088/1674-1056/24/12/128707
Special Issue: TOPICAL REVIEW — 8th IUPAP International Conference on Biological Physics
TOPICAL REVIEW—8th IUPAP International Conference on Biological Physics Prev   Next  

Application of self-consistent field theory to self-assembled bilayer membranes

Zhang Ping-Wen (张平文)a, Shi An-Chang (史安昌)b
a LMAM, CAPT & School of Mathematical Sciences, Peking University, Beijing 100871, China;
b Department of Physics & Astronomy, McMaster University, Hamilton, Ontario Canada L8S 4M1
Abstract  

Bilayer membranes self-assembled from amphiphilic molecules such as lipids, surfactants, and block copolymers are ubiquitous in biological and physiochemical systems. The shape and structure of bilayer membranes depend crucially on their mechanical properties such as surface tension, bending moduli, and line tension. Understanding how the molecular properties of the amphiphiles determine the structure and mechanics of the self-assembled bilayers requires a molecularly detailed theoretical framework. The self-consistent field theory provides such a theoretical framework, which is capable of accurately predicting the mechanical parameters of self-assembled bilayer membranes. In this mini review we summarize the formulation of the self-consistent field theory, as exemplified by a model system composed of flexible amphiphilic chains dissolved in hydrophilic polymeric solvents, and its application to the study of self-assembled bilayer membranes.

Keywords:  amphiphilic molecules      bilayer membranes      elastic moduli      self-consistent field theory  
Received:  20 April 2015      Revised:  20 October 2015      Accepted manuscript online: 
PACS:  87.16.D- (Membranes, bilayers, and vesicles)  
  87.16.A- (Theory, modeling, and simulations)  
  61.25.hk (Polymer melts and blends)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11421101 and 21274005) and the Natural Sciences and Engineering Research Council (NSERC) of Canada.

Corresponding Authors:  Zhang Ping-Wen, Shi An-Chang     E-mail:  pzhang@pku.edu.cn;shi@mcmaster.ca

Cite this article: 

Zhang Ping-Wen (张平文), Shi An-Chang (史安昌) Application of self-consistent field theory to self-assembled bilayer membranes 2015 Chin. Phys. B 24 128707

[1] Alberts B, Bray D, Lewis J, Raff M, Roberts K and Watson J D 2014 Molecular Biology of the Cell, 6th edn. (New York: Garland Science)
[2] Safran S A 1994 Statistical Thermodynamics of Surfaces, Interfaces, and Membranes (New York: Addison-Wesley)
[3] Lipowsky R 1998 Encycl. Appl. Phys. 23 199
[4] Helfrich W 1973 Z. Naturforsch. C 28 693
[5] Ouyang Z C, Liu J X and Xie Y Z 1999 Geometric Methods in the Elastic Theory of Membranes in Liquid Crystal Phases (Singapore: World Scientific)
[6] Tu Z C and Ouyang Z C 2008 J. Comput. Theor. Nanosci. 5 422
[7] Tu Z C 2013 Chin. Phys. B 22 028701
[8] Tu Z C and Ouyang Z C 2014 Adv. Colloid. Interface Sci. 208 66
[9] Li J, Zhang H, Qiu F and Shi A C 2013 Phys. Rev. E 88 012719
[10] Ting C L, Appelö D and Wang Z G 2011 Phys. Rev. Lett. 106 168101
[11] Müller M, Katsov K and Schick M 2002 J. Chem. Phys. 116 2342
[12] Katsov K, Müller M and Schick M 2004 Biophys. J. 87 3277
[13] Nagle J F 2013 Faraday Discuss. 161 11
[14] Dimova R 2014 Adv. Colloid. Interface Sci. 208 225
[15] Nagle J F, Jablin M S, Tristram-Nagle S and Akabori K 2015 Chem. Phys. Lipids 185 3
[16] Sodt A J and Pastor R W 2013 Biophys. J. 104 2002
[17] Levine Z A, Venable R M, Watson M C, Lerner M G, Shea J E, Pastor R W and Brown F L H 2014 J. Am. Chem. Soc. 136 13582
[18] Shi A C 2004 in Developments in Block Copolymer Science and Technology (edited by Hamley I W) (New York: Wiley)
[19] Fredrickson G H 2006 The Equilibrium Theory of Inhomogeneous Polymers (Oxford: Oxford University Press)
[20] Guo Z, Zhang G, Qiu F, Zhang H, Yang Y and Shi A C 2008 Phys. Rev. Lett. 101 028301
[21] Xu W, Jiang K, Zhang P and Shi A C 2013 J. Phys. Chem. B 117 5296
[22] Zhou J and Shi A C 2011 Macromol. Theor. Simul. 20 690
[23] Zhou J and Shi A C 2014 J. Chem. Phys. 140 024903
[24] Cheng X, Lin L, E W, Zhang P and Shi A C 2010 Phys. Rev. Lett. 104 148301
[25] Müller M, Katsov K and Schick M 2006 Phys. Rep. 434 113
[26] Li J, Pastor K A, Shi A C, Schmid F and Zhou J 2013 Phys. Rev. E 88 012718
[27] Dehghan A, Pastor K A and Shi A C 2015 Phys. Rev. E 89 022713
[28] Pera H, Kleijn J M and Leermakers F A M 2014 J. Chem. Phys. 140 065102
[29] Uline M J and Szleifer I 2012 Faraday Discuss. 161 177
[30] Shi A C and Noolandi J 1999 Macromol. Theory Simul. 8 214
[31] Sanyal S and Menon A K 2009 ACS Chem. Biol. 4 895
[1] Transmembrane transport of multicomponent liposome-nanoparticles into giant vesicles
Hui-Fang Wang(王慧芳), Chun-Rong Li(李春蓉), Min-Na Sun(孙敏娜), Jun-Xing Pan(潘俊星), and Jin-Jun Zhang(张进军). Chin. Phys. B, 2022, 31(4): 048703.
[2] Band structure, Fermi surface, elastic, thermodynamic, and optical properties of AlZr3, AlCu3, and AlCu2Zr: First-principles study
Parvin R, Parvin F, Ali M S, Islam A K M A. Chin. Phys. B, 2016, 25(8): 083101.
[3] Self-consistent field theory of adsorption of flexible polyelectrolytes onto an oppositely charged sphere
Tong Zhao-Yang (童朝阳), Zhu Yue-Jin (诸跃进), Tong Chao-Hui (童朝晖). Chin. Phys. B, 2014, 23(3): 038202.
[4] Generalized thermoelsticity of the thermal shock problem in an isotropic hollow cylinder and temperature dependent elastic moduli
Ibrahim A. Abbas and Mohamed I. A. Othman . Chin. Phys. B, 2012, 21(1): 014601.
[5] Cylindrical-confinement-induced phase behaviours of diblock copolymer melts
Liu Mei-Jiao(刘美娇), Li Shi-Ben(李士本), Zhang Lin-Xi(章林溪), and Wang Xiang-Hong(王向红). Chin. Phys. B, 2010, 19(2): 028101.
[6] Pair interaction of bilayer-coated nanoscopic particles
Zhang Qi-Yi(张启义). Chin. Phys. B, 2009, 18(2): 658-663.
No Suggested Reading articles found!