|
Abstract DNA condensation is an important process in many fields including life sciences, polymer physics, and applied technology. In the nucleus, DNA is condensed into chromosomes. In polymer physics, DNA is treated as a semi-flexible molecule and a polyelectrolyte. Many agents, including multi-valent cations, surfactants, and neutral poor solvents, can cause DNA condensation, also referred to as coil-globule transition. Moreover, DNA condensation has been used for extraction and gene delivery in applied technology. Many physical theories have been presented to elucidate the mechanism underlying DNA condensation, including the counterion correlation theory, the electrostatic zipper theory, and the hydration force theory. Recently several single-molecule studies have focused on DNA condensation, shedding new light on old concepts. In this document, the multi-field concepts and theories related to DNA condensation are introduced and clarified as well as the advances and considerations of single-molecule DNA condensation experiments are introduced.
|
Received: 22 January 2015
Revised: 24 March 2015
Accepted manuscript online:
|
PACS:
|
87.14.gk
|
(DNA)
|
|
87.15.hp
|
(Conformational changes)
|
|
82.37.Rs
|
(Single molecule manipulation of proteins and other biological molecules)
|
|
82.35.Rs
|
(Polyelectrolytes)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 21204065 and 20934004) and the Natural Science Foundation of Zhejiang Province, China (Grant No. Y4110357). |
Corresponding Authors:
Ran Shi-Yong
E-mail: syran@wzu.edu.cn
|
Cite this article:
Ran Shi-Yong (冉诗勇), Jia Jun-Li (贾俊丽) A multi-field approach to DNA condensation 2015 Chin. Phys. B 24 128702
|
[1] |
Robert F W 2001 Molecular Biology: Mcgraw-Hill Companies
|
[2] |
Bloomfield V A 1991 Biopolymers 31 1471
|
[3] |
Lerman L 1971 Proc. Nat. Acad. Sci. 68 1886
|
[4] |
Lasic D D 1997 Liposomes in gene delivery: CRC
|
[5] |
Bloomfield V A 1997 Biopolymers 44 269
|
[6] |
Bloomfield V A 1996 Curr. Opin. Struct. Biol. 6 334
|
[7] |
Grosberg A Y, Nguyen T T and Shklovskii B I 2002 Rev. Mod. Phys. 74 329
|
[8] |
Teif V B and Bohinc K 2011 Prog. Biophys. Mol. Bio. 105 208
|
[9] |
Zhou T, Llizo A, Wang C, Xu G Y and Yang Y L 2013 Nanoscale 5 8288
|
[10] |
Iwaki T, Saito T and Yoshikawa K 2007 Coll. Surf. B: Biointerfaces 56 126133
|
[11] |
Jan L, Sebastian D, Rhiju D and Daniel H 2014 Ann. Rev. Biochem. 83 813
|
[12] |
Kornyshev A A 2010 Phys. Chem. Chem. Phys. 12 12352
|
[13] |
Devries R 2010 Biochimie 92 1715
|
[14] |
Marko J F and Cocco S 2003 Physics World 3 37
|
[15] |
Marko J F and Siggia E D 1995 Macromolecules 28 8759
|
[16] |
Schiessel H 2003 J. Phys.: Condens. Matter 15 699
|
[17] |
Pelta J, Livolant F and Sikorav J L 1996 J. Biochem. 271 5656
|
[18] |
Nguyen T T, Rouzina I and Shklovskii B I 2000 J. Chem. Phys. 112 2562
|
[19] |
Andrushchenko V, van de Sande H and Wieser H 2003 Biopolymers 69 529
|
[20] |
Shklovskii B I 1999 Phys. Rev. E 60 5802
|
[21] |
Hsiao P Y 2008 J. Phys. Chem. B 112 7347
|
[22] |
Walter N G, Huang C Y, Manzo A J and Sobhy M A 2008 Nat. Meth. 5 475
|
[23] |
Ran S Y, Sun B and Li M 2007 Physics 36 228 (in Chinese)
|
[24] |
Deniz A A, Mukhopadhyay S and Lemke E A 2008 J. R. Soc. Interface 5 15
|
[25] |
Zhang C and Vander Maarel J R C 2008 J. Phys. Chem. B 112 3552
|
[26] |
Wang Y W, Ran S Y, Man B Y and Yang G C 2011 Soft Matter 7 4425
|
[27] |
Mel'nikov S M, Khan M O, Lindman B and Jonsson B 1999 J. Am. Chem. Soc. 121 1130
|
[28] |
Cheng C and Ran S Y 2014 Sci. World J. 2014 863049
|
[29] |
Toma A C, Frutos M, Livolant F and Raspaud E 2009 Biomacromolecules 10 2129
|
[30] |
Vilfan I D, Conwell C C, Sarkar T and Hud N V 2006 Biochemistry 45 8174
|
[31] |
Ran S Y, Wang Y W, Yang G C and Zhang L X 2011 J. Phys. Chem. B 115 4568
|
[32] |
Golan R, Pietrasanta L I, Hsieh W and Hansma H G 1999 Biochemistry 38 14069
|
[33] |
Guo X, Cui B, Li Y and Ding J 2012 J. Polym. Sci. Polym. Chem. 50 17401745
|
[34] |
Tan Z J, Chen S J 2006 Nucleic Acids Res. 34 6629
|
[35] |
Tan Z J, Chen S J 2006 Biophys.J. 90 1175
|
[36] |
Chai A H, Ran S Y, Zhang D, Jiang Y W, Yang G C and Zhang L X 2013 Chin. Phys. B 22 098701
|
[37] |
Victor J M 1991 J. Chem. Phys. 95 600
|
[38] |
Fixman M 1979 J. Chem. Phys. 70 4995
|
[39] |
Lamm G and Pack G R 2010 Biopolymers 93 619
|
[40] |
Manning G S 1979 Accounts Chem. Res. 12 443449
|
[41] |
Manning G S 1978 Q. Rev. Biophys. 11 179
|
[42] |
Manning G S 1969 J. Chem. Phys. 51 924
|
[43] |
Rouzina I and Bloomfield V A 1996 J. Phys. Chem. 100 9977
|
[44] |
Nguyen T and Shklovskii B I 2001 J. Chem. Phys. 114 5905
|
[45] |
Leikin S, Parsegian V A, Rau D C and Rand R P 1993 Ann. Rev. Phys. Chem. 44 369
|
[46] |
Kornyshev A and Leikin S 1989 Phys. Rev. A 40 6431
|
[47] |
Kornyshev A and Leikin S 1999 Phys. Rev. Lett. 82 4138
|
[48] |
Dobrynin A and Rubinstein M 2005 Prog. Poly. Sci. 30 10491118
|
[49] |
Mcintosh D B, Ribeck N and Saleh O A 2009 Phys. Rev. E 80 041803
|
[50] |
Yoshikawa K, Takahashi M, Vasilevskaya V V, Khokhlov A R 1996 Phys. Rev. Lett. 76 3029
|
[51] |
Zhang R and Shklovskii B I 2005 Physica A 349 563
|
[52] |
Mamasakhlisov Y S, Todd B A, Badasyan A V, Mkrtchyan A V, Morozov V F and Parsegian V A 2009 Phys. Rev. E 80 031915
|
[53] |
Kulic I M and Schiessel H 2004 Phys. Rev. Lett. 92 4
|
[54] |
Ubbink J and Odijk T 1995 Biophys. J. 68 54
|
[55] |
Miller I, Keentok M, Pereira G and Williams D 2005 Phys. Rev. E 71 031802
|
[56] |
Levin Y 2002 Rep. Prog. Phys. 65 1577
|
[57] |
Rau D C, Lee B and Parsegian V A 1984 Proc. Nat. Acad. Sci. 81 2621
|
[58] |
Israelachvili J and Wennerström H 1996 Nature 379 219
|
[59] |
Parsegian V A and Zemb T 2011 Curr. Opin. Colloid Interface Sci. 16 618624
|
[60] |
Yoshikawa K, Takahashi M, Vasilevskaya V V and Khokhlov A R 1996 Phys. Rev. Lett. 76 3029
|
[61] |
Ueda M and Yoshikawa K 1996 Phys. Rev. Lett. 77 2133
|
[62] |
Lifshitz I M, Grosberg A Y and Khokhlov A R 1978 Rev. Mod. Phys. 50 683
|
[63] |
Baumann C G, Smith S B, Bloomfield V A and Bustamante C 1997 Proc. Nat. Acad. Sci. 94 6185
|
[64] |
Ran S Y 2012 Acta Phys. Sin. 61 170503 (in Chinese)
|
[65] |
Hays J B, Magar M E and Zimm B H 1969 Biopolymers 8 531
|
[66] |
Stefan M I and Nov'ere N L 2013 PLos Comput. Biology 9 e1003106
|
[67] |
Ran S Y, Wang X L, Fu W B, Wang W C and Li M 2008 Chin. Sci. Bull. 53 836
|
[68] |
Besteman K, Van Eijk K and Lemay S G 2007 Nat. Phys. 3 641
|
[69] |
Todd B A and Rau D C 2008 Nucleic Acids Res. 36 501
|
[70] |
Todd B A, Adrian P V, Shirahata A, Thomas T J and Rau D C 2008 Biophys. J. 94 4775
|
[71] |
Cheng C, Jia J L and Ran S Y 2015 Soft Matter 11 3927
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|