Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(10): 107306    DOI: 10.1088/1674-1056/24/10/107306

Fermi level pinning effects at gate-dielectric interfaces influenced by interface state densities

Hong Wen-Ting (洪文婷), Han Wei-Hua (韩伟华), Lyu Qi-Feng (吕奇峰), Wang Hao (王昊), Yang Fu-Hua (杨富华)
Engineering Research Center for Semiconductor Integration Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
Abstract  The dependences of Fermi-level pinning on interface state densities for the metal-dielectric, ploycrystalline silicon-dielectric, and metal silicide-dielectric interfaces are investigated by calculating their effective work functions and their pinning factors. The Fermi-level pinning factors and effective work functions of the metal-dielectric interface are observed to be more susceptible to the increasing interface state densities, differing significantly from that of the ploycrystalline silicon-dielectric interface and the metal silicide-dielectric interface. The calculation results indicate that metal silicide gates with high-temperature resistance and low resistivity are a more promising choice for the design of gate materials in metal-oxide semiconductor (MOS) technology.
Keywords:  interface state density      Fermi-level pinning      MIS structure      effective work function  
Received:  27 April 2015      Revised:  26 May 2015      Accepted manuscript online: 
PACS:  73.40.Qv (Metal-insulator-semiconductor structures (including semiconductor-to-insulator))  
  85.30.Tv (Field effect devices)  
  73.30.+y (Surface double layers, Schottky barriers, and work functions)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61376096, 61327813, and 11234007).
Corresponding Authors:  Han Wei-Hua     E-mail:

Cite this article: 

Hong Wen-Ting (洪文婷), Han Wei-Hua (韩伟华), Lyu Qi-Feng (吕奇峰), Wang Hao (王昊), Yang Fu-Hua (杨富华) Fermi level pinning effects at gate-dielectric interfaces influenced by interface state densities 2015 Chin. Phys. B 24 107306

[1] Jossel E and Skotnicki T 1999 International Electron Device Meeting Technical Digest, December 5, 1999, Grenoble, France, p. 661
[2] Hwang J M and Pollack G 1992 International Electron Device Meeting Technical Digest, December 13, 1992, San Francisco, USA, p. 345
[3] Heine V 1965 Phys. Rev. 138 1689
[4] Mönch W 1996 J. Vac. Sci. Technol. B 14 2985
[5] Mönch W 1987 Phys. Rev. Lett. 58 1260
[6] Wang X L, Wang W W, Han K, Yang H, Zhang J, Ma X L, Xiang J J, Zhao C, Chen D P and Ye T C 2012 Junction Technology, May 14, 2012, Shanghai, China, p. 176
[7] Yeo Y C, King T J and Hu C M 2002 IEEE Electron Dev. Lett. 23 342
[8] Yeo Y C, King T J and Hu C M 2002 J. Appl. Phys. 92 7266
[9] Wen H C, Majhi P, Choi K, Park C S, Alshareef H N, Harris H R, Luan H, Niimi H, Park H B, Bersuker G, Lysaght P S, Kwong D L, Song S C, Lee B H and Jammy R 2008 Microelectron. Eng. 85 2
[10] Huang A P, Zhang X H, Xiao Z S, Yang Z C, Wang M, Chu P K and Yang X D 2011 Chin. Phys. B 20 097303
[11] Yang Z C, Huang A P, Zheng X H, Xiao Z S, Liu X Y, Zhang X W, Chu P K and Wang W W 2010 IEEE Electron Dev. Lett. 31 1101
[12] Schaeffer J K, Fonseca L R C, Samavedam S B, Liang Y, Tobin P J and White B E 2004 Appl. Phys. Lett. 85 1826
[13] Robertson J, Sharia O and Demkov A A 2007 Appl. Phys. Lett. 91 132912
[14] Robertson J, Guo Y and Lin L 2015 J. Appl. Phys. 117 112806
[15] Li Z L, Houssa M, Schram T, De Gendt S and De Meryer K 2009 Appl. Phys. Lett. 95 183506
[16] Tersoff J 1984 Phys. Rev. B 30 4874
[17] Tung R T 2000 Phys. Rev. Lett. 84 6078
[18] Lince J R, Carre D J and Fleischauer P D 1987 Phys. Rev. B 36 1647
[19] Lin D W, Wang M, Cheng M L, Sheu Y M, Tarng B, Chu C M, Nieh C W, Lo C P, Tsai W C, Lin R, Wang S W, Cheng K L, Wu C M, Lei M T, Wu C C, Diaz C H and Chen M J 2008 IEEE Electron Dev. Lett. 29 998
[20] Manabe K, Takahashi K, Ikarashi T, Morirka A, Watanabe H, Yoshihara T and Tatsumi T 2005 Jpn. J. Appl. Phys. 44 2205
[21] Park C S, Cho B J and Kwong D L 2004 IEEE Electron Dev. Lett. 25 372
[22] Zhu S, Chen J, Li M F, Lee S J, Nsingh J, Zhu C X, Du A, Tung C H, Chin A and Kwong D L 2004 IEEE Electron Dev. Lett. 25 565
[23] Kurtin S, McGill T C and Mead C A 1969 Phys. Rev. Lett. 22 1433
[24] Lin L, Guo Y and Robertson J 2012 Appl. Phys. Lett. 101 052110
[25] Mohiddon M A and Krishna M 2011 J. Mater. Sci. 46 2672
[26] Zhu S Y, Lo G Q and Kwong D L 2011 Opt. Express 19 15843
[27] Robertson J 2000 J. Vac. Sci. Technol. B 18 1785
[28] Robertson J and Falabretti B 2006 J. Appl. Phys. 100 014111
[29] Sayan S, Garfunkel E and Suzer S 2002 Appl. Phys. Lett. 80 2135
[30] Xu Y N and Ching W Y 1995 Phys. Rev. B 51 379
[1] Flexible electrically pumped random lasing from ZnO nanowires based on metal-insulator-semiconductor structure
Miao-Ling Que(阙妙玲), Xian-Di Wang(王贤迪), Yi-Yao Peng(彭轶瑶), Cao-Feng Pan(潘曹峰). Chin. Phys. B, 2017, 26(6): 067301.
[2] Interface states study of intrinsic amorphous silicon for crystalline silicon surface passivation in HIT solar cell
You-Peng Xiao(肖友鹏), Xiu-Qin Wei(魏秀琴), Lang Zhou(周浪). Chin. Phys. B, 2017, 26(4): 048104.
[3] Modulation of WNx/Ge Schottky barrier height by varying N composition of tungsten nitride
Wei Jiang-Bin (魏江镔), Chi Xiao-Wei (池晓伟), Lu Chao (陆超), Wang Chen (王尘), Lin Guang-Yang (林光杨), Wu Huan-Da (吴焕达), Huang Wei (黄巍), Li Cheng (李成), Chen Song-Yan (陈松岩), Liu Chun-Li (刘春莉). Chin. Phys. B, 2015, 24(7): 077306.
No Suggested Reading articles found!