Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(9): 098903    DOI: 10.1088/1674-1056/24/9/098903
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev  

Global forward-predicting dynamic routing for traffic concurrency space stereo multi-layer scale-free network

Xie Wei-Hao (解维浩)a, Zhou Bin (周斌)a, Liu En-Xiao (刘恩晓)a, Lu Wei-Dang (卢为党)b, Zhou Ting (周婷)c
a Institute of Oceanographic Instrumentation, Shandong Academy of Science, Qingdao 266001, China;
b Zhejiang University of Technology College of Information Engineering, Zhejiang 310023, China;
c Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
Abstract  Many real communication networks, such as oceanic monitoring network and land environment observation network, can be described as space stereo multi-layer structure, and the traffic in these networks is concurrent. Understanding how traffic dynamics depend on these real communication networks and finding an effective routing strategy that can fit the circumstance of traffic concurrency and enhance the network performance are necessary. In this light, we propose a traffic model for space stereo multi-layer complex network and introduce two kinds of global forward-predicting dynamic routing strategies, global forward-predicting hybrid minimum queue (HMQ) routing strategy and global forward-predicting hybrid minimum degree and queue (HMDQ) routing strategy, for traffic concurrency space stereo multi-layer scale-free networks. By applying forward-predicting strategy, the proposed routing strategies achieve better performances in traffic concurrency space stereo multi-layer scale-free networks. Compared with the efficient routing strategy and global dynamic routing strategy, HMDQ and HMQ routing strategies can optimize the traffic distribution, alleviate the number of congested packets effectively and reach much higher network capacity.
Keywords:  multi-layer complex network      scale-free      routing strategy      network capacity  
Received:  27 December 2014      Revised:  27 May 2015      Accepted manuscript online: 
PACS:  89.75.Fb (Structures and organization in complex systems)  
  89.75.Kd (Patterns)  
  05.70.Fh (Phase transitions: general studies)  
  05.10.-a (Computational methods in statistical physics and nonlinear dynamics)  
Fund: Project supported by the Youth Science Funds of Shandong Academy of Sciences, China (Grant No. 2014QN032).
Corresponding Authors:  Xie Wei-Hao     E-mail:  bangongxinxiang@126.com

Cite this article: 

Xie Wei-Hao (解维浩), Zhou Bin (周斌), Liu En-Xiao (刘恩晓), Lu Wei-Dang (卢为党), Zhou Ting (周婷) Global forward-predicting dynamic routing for traffic concurrency space stereo multi-layer scale-free network 2015 Chin. Phys. B 24 098903

[1] Albert R and Barabasi A L 2002 Rev. Mod. Phys. 74 47
[2] Zhuo Y, Peng Y, Liu C, Liu Y and Long K 2011 Physica A 390 2401
[3] Čech R, Mačutek J and Žabokrtský Z 2011 Physica A 390 3614
[4] Zhang H, Guan Z. H, Li T, Zhang X H and Zhang D X 2013 Physica A 392 974
[5] Li X and Chen G 2003 Physica A 328 274
[6] Pan Z F, Li X and Wang X F 2006 Phys. Rev. E 73 056109
[7] Fan Z P, Chen G R and Zhang Y 2009 Phys. Lett. A 373 1601
[8] Sarshar N and Roychowdhury V 2004 Phys. Rev. E 69 1
[9] Barabási A L and Albert R 1999 Science 286 509
[10] Pastor-Satorras R and Vespignani A 2004 Evolution and Structure of the Internet: A Statistical Physics Approach (Cambridge: Cambridge University Press)
[11] Liu S X, Ji X S, Liu C X and Guo H 2014 Acta Phys. Sin 63 158902 (in Chinese)
[12] Zhang X K, Wu J and Tan Y J 2013 Chin. Phys. Lett. 30 108901
[13] Zhang L S, Gu W F and Hu G 2014 Chin. Phys. B 23 108902
[14] Cui H, He H L, Liu X H and Li Y 2012 Chin. Phys. B 21 109201
[15] Watts D J and Strogaz S H 1998 Nature 393 440
[16] Barabási A L and Albert R 1999 Science 286 509
[17] Newman M E J 2001 Phys. Rev. E 64 016132
[18] Boccaletti S, Latorab V, Morenod Y, Chavezf M and Hwanga D U 2006 Phys. Rep. 424 175
[19] Cai S M, Yan G, Zhou T, Zhou P L, Fu Z Q and Wang B H 2007 Phys. Lett. A 366 14
[20] Ling X, Hu M B, Long J C, Ding J X and Shi Q 2013 Chin. Phys. B 22 018904
[21] Wang W X, Wang B H, Yin C Y, Xie Y B and Zhou T 2006 Phys. Rev. E 73 026111
[22] Yan G, Zhou T, Hu B, Fu Z Q and Wang B H 2006 Phys. Rev. E 73 046108
[23] Ling X, Hu M B, Jiang R and Wu Q S 2010 Phys. Rev. E 81 016113
[24] Zhou Z, Huang Z G, Liang H, Lai Y C, Yang L and Xue D S 2013 Phys. Rev. E 87 012808
[25] Ling X, Jiang R, Wang X, Hu M B and Wu Q S 2008 Physica A 387 4709
[26] Tadić B, Thurner S and Rodgers G J 2004 Phys. Rev. E 69 036102
[27] Wang W X, Yin C Y, Yan G and Wang B H 2006 Phys. Rev. E 74 016101
[28] Kurant M and Thiran P 2006 Phys. Rev. Lett. 96 138701
[29] Zhuo Y, Peng Y F, Liu C, Liu Y K and Long K P 2011 Physica A 390 2401
[30] Guan Z H, Li D and Kong Z M 2010 Physica A 389 198
[31] Guimerá R, Díaz-Guilera A, Vega-Redondo F, Cabrales A and Arenas A 2002 Phys. Rev. Lett. 89 248701
[32] Mukherjee G and Manna S S 2005 Phys. Rev. E 71 066108
[33] Arenas A, Díaz-Guilera A and Guimerá R 2001 Phys. Rev. Lett. 86 3196
[1] Evolution of donations on scale-free networks during a COVID-19 breakout
Xian-Jia Wang(王先甲) and Lin-Lin Wang(王琳琳). Chin. Phys. B, 2022, 31(8): 080204.
[2] Robustness measurement of scale-free networks based on motif entropy
Yun-Yun Yang(杨云云), Biao Feng(冯彪), Liao Zhang(张辽), Shu-Hong Xue(薛舒红), Xin-Lin Xie(谢新林), and Jian-Rong Wang(王建荣). Chin. Phys. B, 2022, 31(8): 080201.
[3] Finite density scaling laws of condensation phase transition in zero-range processes on scale-free networks
Guifeng Su(苏桂锋), Xiaowen Li(李晓温), Xiaobing Zhang(张小兵), Yi Zhang(张一). Chin. Phys. B, 2020, 29(8): 088904.
[4] Study on the phase transition of the fractal scale-free networks
Qing-Kuan Meng(孟庆宽), Dong-Tai Feng(冯东太), Yu-Ping Sun(孙玉萍), Ai-Ping Zhou(周爱萍), Yan Sun(孙艳), Shu-Gang Tan(谭树刚), Xu-Tuan Gao(高绪团). Chin. Phys. B, 2018, 27(10): 106402.
[5] Multiple-predators-based capture process on complex networks
Rajput Ramiz Sharafat, Cunlai Pu(濮存来), Jie Li(李杰), Rongbin Chen(陈荣斌), Zhongqi Xu(许忠奇). Chin. Phys. B, 2017, 26(3): 038901.
[6] Optimized routing strategy for complex network with multiple priorities
Shi-Bao Li(李世宝), Zong-Xing Sun(孙宗星), Jian-Hang Liu(刘建航), Hai-Hua Chen(陈海华). Chin. Phys. B, 2016, 25(8): 088902.
[7] Stability of weighted spectral distribution in a pseudo tree-like network model
Bo Jiao(焦波), Yuan-ping Nie(聂原平), Cheng-dong Huang(黄赪东), Jing Du(杜静), Rong-hua Guo(郭荣华), Fei Huang(黄飞), Jian-mai Shi(石建迈). Chin. Phys. B, 2016, 25(5): 058901.
[8] Degree distribution and robustness of cooperativecommunication network with scale-free model
Wang Jian-Rong (王建荣), Wang Jian-Ping (王建萍), He Zhen (何振), Xu Hai-Tao (许海涛). Chin. Phys. B, 2015, 24(6): 060101.
[9] Cascading failure in the wireless sensor scale-free networks
Liu Hao-Ran (刘浩然), Dong Ming-Ru (董明如), Yin Rong-Rong (尹荣荣), Han Li (韩丽). Chin. Phys. B, 2015, 24(5): 050506.
[10] Effects of channel noise on synchronization transitions in delayed scale-free network of stochastic Hodgkin-Huxley neurons
Wang Bao-Ying (王宝英), Gong Yu-Bing (龚玉兵). Chin. Phys. B, 2015, 24(11): 118702.
[11] Improved routing strategy based on gravitational field theory
Song Hai-Quan (宋海权), Guo Jin (郭进). Chin. Phys. B, 2015, 24(10): 108901.
[12] Co-evolution of the brand effect and competitiveness in evolving networks
Guo Jin-Li (郭进利). Chin. Phys. B, 2014, 23(7): 070206.
[13] Evolution of IPv6 Internet topology with unusual sudden changes
Ai Jun (艾均), Zhao Hai (赵海), Kathleen M. Carleyb, Su Zhan (苏湛), Li Hui (李辉). Chin. Phys. B, 2013, 22(7): 078902.
[14] Analysis of network traffic flow dynamics based on gravitational field theory
Liu Gang (刘刚), Li Yong-Shu (李永树), Zhang Xi-Ping (张喜平). Chin. Phys. B, 2013, 22(6): 068901.
[15] Effects of node buffer and capacity on network traffic
Ling Xiang (凌翔), Hu Mao-Bin (胡茂彬), Ding Jian-Xun (丁建勋). Chin. Phys. B, 2012, 21(9): 098902.
No Suggested Reading articles found!