INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Improved performance of near UV light-emitting diodes with a composition-graded p-AlGaN irregular sawtooth electron-blocking layer |
Ping Qin(秦萍)1, Wei-Dong Song(宋伟东)1, Wen-Xiao Hu(胡文晓)1, Yuan-Wen Zhang(张苑文)1, Chong-Zhen Zhang(张崇臻)1, Ru-Peng Wang(王汝鹏)1, Liang-Liang Zhao(赵亮亮)1, Chao Xia(夏超)1, Song-Yang Yuan(袁松洋)1, Yi-an Yin(尹以安)1,2, Shu-Ti Li(李述体)1,2, Shi-Chen Su(宿世臣)1,2 |
1 Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, Institute of Opto-electronic Materials and Technology, South China Normal University, Guangzhou 510631, China; 2 Guangdong Engineering Research Center of Optoelectronic Functional Materials and Devices, Institute of Opto-electronic Materials and Technology, Guangzhou 510631, China |
|
|
Abstract We investigate the performances of the near-ultraviolet (about 350 nm-360 nm) light-emitting diodes (LEDs) each with specifically designed irregular sawtooth electron blocking layer (EBL) by using the APSYS simulation program. The internal quantum efficiencies (IQEs), light output powers, carrier concentrations in the quantum wells, energy-band diagrams, and electrostatic fields are analyzed carefully. The results indicate that the LEDs with composition-graded p-AlxGa1-xN irregular sawtooth EBLs have better performances than their counterparts with stationary component p-AlGaN EBLs. The improvements can be attributed to the improved polarization field in EBL and active region as well as the alleviation of band bending in the EBL/p-AlGaN interface, which results in less electron leakage and better hole injection efficiency, thus reducing efficiency droop and enhancing the radiative recombination rate.
|
Received: 27 January 2016
Revised: 08 April 2016
Accepted manuscript online:
|
PACS:
|
85.60.Jb
|
(Light-emitting devices)
|
|
73.40.Kp
|
(III-V semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)
|
|
78.20.Bh
|
(Theory, models, and numerical simulation)
|
|
87.16.ad
|
(Analytical theories)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11474105 and 51172079), the Science and Technology Program of Guangdong Province, China (Grant Nos. 2015B090903078 and 2015B010105011), the Program for Changjiang Scholars and Innovative Research Team in University, China (Grant No. IRT13064), the Science and Technology Project of Guangzhou City, China (Grant No. 201607010246), and the Science and Technology Planning Project of Guangdong Province, China (Grant No. 2015A010105025). |
Corresponding Authors:
Shi-Chen Su
E-mail: shichensu@126.com
|
Cite this article:
Ping Qin(秦萍), Wei-Dong Song(宋伟东), Wen-Xiao Hu(胡文晓), Yuan-Wen Zhang(张苑文), Chong-Zhen Zhang(张崇臻), Ru-Peng Wang(王汝鹏), Liang-Liang Zhao(赵亮亮), Chao Xia(夏超), Song-Yang Yuan(袁松洋), Yi-an Yin(尹以安), Shu-Ti Li(李述体), Shi-Chen Su(宿世臣) Improved performance of near UV light-emitting diodes with a composition-graded p-AlGaN irregular sawtooth electron-blocking layer 2016 Chin. Phys. B 25 088505
|
[1] |
Asif K, Krishnan B and Tom K 2008 Nat. Photon. 2 77
|
[2] |
Li, J, Lin J Y and Jiang H X 2006 Appl. Phys. Lett. 88 171909
|
[3] |
Yu H P, Li S B, Zhang P, Wu S H, Wei X B, Wu Z M and Chen Z 2014 Chin. Phys. Lett. 31 108502
|
[4] |
Lu T P, Li S T, Zhang K, Liu C, Xiao G W, Zhou Y G, Zheng S W, Yin Y A, Wu L J, Wang H L and Yang X D 2011 Chin. Phys. B 20 098503
|
[5] |
Yin Y A, Wang N Y, Fan G H and Zhang Z H 2014 Superlattices Microstruct. 76 149
|
[6] |
Wu T, Feng Z H, Liu B, Xiong H, Zhang J B, Dai J N, Cai S J and Chen C Q 2013 Opt. Quantum Electron. 45 381
|
[7] |
Cyril P, Shinya, Tetsuhiko I, Takehiko F, Myunghee K, Yosuke N, Akira H, Masamichi I, Motoaki I, Satoshi K, Isamu A and Hiroshi A 2011 Phys. Stat. Sol. A 208 1594
|
[8] |
Hideki H, Katsushi A, Takashi K, Takao N and Koji I 2004 J. Appl. Phys. 43 L1241
|
[9] |
Yang G F, Xie F, Dong K X, Chen P, Xue J J, Zhi T, Tao T, Liu B, Xie Z L, Xiu X Q, Han P, Shi Y, Zhang R and Zheng Y D 2014 Physica E 62 55
|
[10] |
Gutt R, Passow T, Kunzer M, Pletschen W, Kirste L, Forghani K, Scholz F, Köhler K and Wagner J 2012 Appl. Phys. Express 5 032101 1882
|
[11] |
Ma L, Shen G D, Gao Z Y and Xu C 2015 Chin. Phys. B 24 097202
|
[12] |
Kenneth J V, Michael I, Stacia K, Steven P D and Shuji N 2009 Appl. Phys. Lett. 94 061116
|
[13] |
Wang C H, Chen J R, Chiu C H, Kuo H C, Li Y L, Lu T C and Wang S C 2010 IEEE Photon. Technol. Lett. 22 236
|
[14] |
Aurélien D and Michael J G 2010 Appl. Phys. Lett. 96 103504
|
[15] |
Monemar B and Sernelius B E 2007 Appl. Phys. Lett. 91 181103
|
[16] |
Han S H, Lee D Y, Lee S J, Cho C Y, Kwon M K, Lee S P, Noh D Y, Kim D J, Kim Y C and Park S J 2009 Appl. Phys. Lett. 94 231123
|
[17] |
Kuo Y K, Chang J Y, Tsai M C and Yen S H 2009 Appl. Phys. Lett. 95 011116
|
[18] |
Xia, C S, Li Z M S, Lu W, Zhang Z H, Sheng Y, Hu W D and Cheng L W 2012 J. Appl. Phys. 111 094503
|
[19] |
Jun Z, Wu T, Feng W, Weiyi Y, Hui X, Jiangnan D, Yanyan F, Zhihao W and Changqing C 2013 IEEE Photon. J. 5 1600310
|
[20] |
Hirayama H, Tsukada Y, Maeda T and Kamata N 2010 Appl. Phys. Express 3 031002
|
[21] |
Kuo Y K, Chang J Y and Tsai M C 2010 Opt. Lett. 35 3285
|
[22] |
Yen S H and Kuo Y K 2008 J. Appl. Phys. 103 103115
|
[23] |
Zhang Y Y, Zhu X L, Yin Y A and Ma J 2012 IEEE Electron Dev. Lett. 33 994
|
[24] |
Yen S H and Kuo Y K 2008 J. Appl. Phys. 103 103115
|
[25] |
Xia C S, Simon Li Z M, Li Z Q and Sheng Y 2013 Appl. Phys. Lett. 102 013507
|
[26] |
Fiorentini V, Bernardini F and Ambacher O 2002 Appl. Phys. Lett. 80 1204
|
[27] |
Chichibu S F, Abare A C, Minsky M S, Keller S, Fleischer S B, Bowers J E, Hu E, Mishra U K, Coldren L A, DenBaars S P and Sota T 1998 Appl. Phys. Lett. 73 2006
|
[28] |
Vurgaftman I, Meyer J R and Ram-Mohan L R 2001 J. Appl. Phys. 89 5815
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|