Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(7): 074502    DOI: 10.1088/1674-1056/24/7/074502
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Stabilizing effect of plasma discharge on bubbling fluidized granular bed

Hu Mao-Bin (胡茂彬), Dang Sai-Chao (党赛超), Ma Qiang (马强), Xia Wei-Dong (夏维东)
School of Engineering Science, University of Science and Technology of China, Hefei 230026, China
Abstract  

Fluidized beds have been widely used for processing granular materials. In this paper, we study the effect of plasma on the fluidization behavior of a bubbling fluidized bed with an atmospheric pressure plasma discharger. Experiment results show that the bubbling fluidized bed is stabilized with the discharge of plasma. When the discharge current reaches a minimum stabilization current Cms, air bubbles in the bed will disappear and the surface fluctuation is completely suppressed. A simplified model is proposed to consider the effect of electric Coulomb force generated by the plasma. It is found that the Coulomb force will propel the particles to move towards the void area, so that the bubbling fluidized bed is stabilized with a high enough plasma discharge.

Keywords:  plasma fluidized bed      granular matter      stabilization effect  
Received:  21 October 2014      Revised:  04 January 2015      Accepted manuscript online: 
PACS:  45.70.-n (Granular systems)  
  52.77.-j (Plasma applications)  
  89.75.Fb (Structures and organization in complex systems)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11035005 and 11034010).

Corresponding Authors:  Hu Mao-Bin, Xia Wei-Dong     E-mail:  humaobin@ustc.edu.cn;wdxia@ustc.edu.cn

Cite this article: 

Hu Mao-Bin (胡茂彬), Dang Sai-Chao (党赛超), Ma Qiang (马强), Xia Wei-Dong (夏维东) Stabilizing effect of plasma discharge on bubbling fluidized granular bed 2015 Chin. Phys. B 24 074502

[1] Majmudar T S and Behringer R P 2005 Nature 435 1079
[2] Hu M B, Jiang R and Wu Q S 2013 Chin. Phys. B 22 066301
[3] Hu M B, Liu Q Y, Sun W P, Jiang R and Wu Q S 2014 Appl. Math. Mech. Engl. Ed. 35 1565
[4] van Gerner H J, van der Hoef M A, van der Meer D and van der Weele K 2010 Phys. Rev. E 82 012301
[5] Zheng H P, Jiang Y M and Peng Z 2013 Chin. Phys. B 22 040511
[6] Katsuragi H and Durian D J 2013 Phys. Rev. E 87 052208
[7] Yan X, Shi Q, Hou M, Lu K and Chan C K 2003 Phys. Rev. Lett. 91 014302
[8] Shi Q, Sun G, Hou M and Lu K 2007 Phys. Rev. E 75 061302
[9] To K, Lai P Y and Pak H K 2001 Phys. Rev. Lett. 86 71
[10] Thomas C C and Durian D J 2013 Phys. Rev. E 87 052201
[11] Kuo C C and Dennin M 2013 Phys. Rev. E 87 030201(R)
[12] Bi D, Zhang J, Chakraborty B and Behringer R P 2011 Nature 480 355
[13] Chen W, Hou M, Lu K, Jiang Z and Lam L 2001 Phys. Rev. E 64 061305
[14] Hou M, Chen W, Zhang T, Lu K and Chan C K 2003 Phys. Rev. Lett. 91 204301
[15] Yang G C, Liu Q Y, Hu M B, Jiang R and Wu Q S 2014 Phys. Lett. A 378 1281
[16] Hou M, Tu H, Liu R, Li Y, Lu K, Lai P Y and Chan C K 2008 Phys. Rev. Lett. 100 068001
[17] Li Y, Liu R and Hou M 2012 Phys. Rev. Lett. 109 198001
[18] Qadir A, Shi Q F, Liang X W and Sun G 2010 Chin. Phys. B 19 034601
[19] Geldart D 1973 Powder Technology 7 285
[20] Doichev K and Akhmakov N S 1979 Chem. Eng. Sci. 34 1357
[21] Liu L X, Rudolph V and Litster J D 1996 Powder Technology 88 65
[22] Karches M and von Rohr P R 2001 Surface and Coatings Technology 142 28
[23] Chen G L, Fan S H, Li C L, et al. 2005 Chin. Phys. Lett. 22 1980
[24] Chen G L, Chen S, Zhou M, Feng W, Gu W and Yang S 2006 J. Phys. D 39 5211
[25] Ye Q, Zhang T, Lu F, Li J, He Z and Lin F 2008 J. Phys. D 41 025207
[26] Marlon H, Carlos V P and Rafael C H 2003 Plasma Sources Sci. Technol. 12 165
[27] Simor M, Ràhel J, Vojtek P and Cernàk M 2002 Appl. Phys. Lett. 81 2716
[28] Stark R H and Schoenbach K H 1999 J. Appl. Phys. 85 2075
[29] Guo Y B and Hong F C N 2003 Appl. Phys. Lett. 82 337
[30] Mohammedi M N, Cavvadias S, Leuenberger J L, Francke E and Amouroux J 1995 Plasma Chem. Plasma Process. 16 S191
[31] Francke E and Amouroux J 1997 Plasma Chem. Plasma Process. 17 433
[1] Resistance law of a rod penetrating a multilayer granular raft
Zonglin Li(李宗霖), Qiang Tian(田强), and Haiyan Hu(胡海岩). Chin. Phys. B, 2023, 32(3): 034501.
[2] Correlation mechanism between force chains and friction mechanism during powder compaction
Ning Zhang(张宁), Shuai Zhang(张帅), Jian-Jun Tan(谈健君), and Wei Zhang(张炜). Chin. Phys. B, 2022, 31(2): 024501.
[3] Experimental study and analysis on the rising motion of grains in a vertically-vibrated pipe
Liu Yu (刘煜), Zhao Jun-Hong (赵俊红). Chin. Phys. B, 2015, 24(3): 034502.
[4] Effect of size polydispersity on the structural and vibrational characteristics of two-dimensional granular assemblies
Zhang Guo-Hua (张国华), Sun Qi-Cheng (孙其诚), Shi Zhi-Ping (石志萍), Feng Xu (冯旭), Gu Qiang (顾强), Jin Feng (金峰). Chin. Phys. B, 2014, 23(7): 076301.
[5] Properties of surface waves in granular media under gravity
Zheng He-Peng (郑鹤鹏). Chin. Phys. B, 2014, 23(5): 054503.
[6] Stress distribution and surface instability of an inclined granular layer
Zheng He-Peng (郑鹤鹏), Jiang Yi-Min (蒋亦民), Peng Zheng (彭政). Chin. Phys. B, 2013, 22(4): 040511.
[7] Directed segregation in compartmentalized bi-disperse granular gas
Sajjad Hussain Shah, Li Yin-Chang(李寅阊), Cui Fei-Fei(崔非非), Zhang Qi(张祺), and Hou Mei-Ying(厚美瑛) . Chin. Phys. B, 2012, 21(1): 014501.
[8] Effect of number density on velocity distributions in a driven quasi-two-dimensional granular gas
Sajjad Hussain Shah, Li Yin-Chang(李寅阊), and Hou Mei-Ying (厚美瑛). Chin. Phys. B, 2010, 19(10): 108203.
No Suggested Reading articles found!