Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(4): 044704    DOI: 10.1088/1674-1056/23/4/044704
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Large eddy simulations of a circular orifice jet with and without a cross-sectional exit plate

Zhang Jian-Peng (张健鹏)a, Xu Min-Yi (徐敏义)b, Mi Jian-Chun (米建春)a c
a State Key Laboratory of Turbulence & Complex Systems, College of Engineering, Peking University, Beijing 100871, China;
b Marine Engineering College, Dalian Maritime University, Dalian 116026, China;
c College of Energy & Power Engineering, Changsha University of Science and Technology, Changsha 410004, China
Abstract  The effect of a cross-sectional exit plane on the downstream mixing characteristics of a circular turbulent jet is investigated using large eddy simulation (LES). The turbulent jet is issued from an orifice-type nozzle at an exit Reynolds number of 5× 104. Both instantaneous and statistical velocity fields of the jet are provided. Results show that the rates of the mean velocity decay and jet spread are both higher in the case with the exit plate than without it. The existence of the plate is found to increase the downstream entrainment rate by about 10% on average over the axial range of 8-30de (exit diameter). Also, the presence of the plate enables the formation of vortex rings to occur further downstream by 0.5-1.0de. A physical insight into the near-field jet is provided to explain the importance of the boundary conditions in the evolution of a turbulent jet. In addition, a method of using the decay of the centreline velocity and the half-width of the jet to calculate the entrainment rate is proposed.
Keywords:  circular orifice jet      large eddy simulation (LES)      exit plate      entrainment  
Received:  07 June 2013      Revised:  27 September 2013      Accepted manuscript online: 
PACS:  47.27.ep (Large-eddy simulations)  
  47.27.wg (Turbulent jets)  
  47.85.lk (Mixing enhancement)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11072005 and 10921202) and the Fundamental Research Funds for the Central Universities, China (Grant No. 3132013029).
Corresponding Authors:  Mi Jian-Chun     E-mail:  jcmi@coe.pku.edu.cn
About author:  47.27.ep; 47.27.wg; 47.85.lk

Cite this article: 

Zhang Jian-Peng (张健鹏), Xu Min-Yi (徐敏义), Mi Jian-Chun (米建春) Large eddy simulations of a circular orifice jet with and without a cross-sectional exit plate 2014 Chin. Phys. B 23 044704

[1] Wygnanski I and Fiedler H 1969 J. Fluid Mech. 38 577
[2] Hussein H J, Capp S P and George W K 1994 J. Fluid Mech. 258 31
[3] Hussain A K M F and Zaman K B M Q 1981 J. Fluid Mech. 110 39
[4] George W K 1989 Advances in Turbulence (New York: Springer-Verlag) p. 39
[5] Becker H A and Massaro T A 1968 J. Fluid Mech. 31 435
[6] Dimotakis P E, Miake-Lye R C and Papantoniou D A 1983 Phys. Fluids 26 3185
[7] Mi J, Nobes D S and Nathan G J 2001 J. Fluid Mech. 432 91
[8] Malmström T G, Kirkpatrick A T, Christensen B and Knappmiller K D 1997 J. Fluid Mech. 346 363
[9] Brancher P, Chomaz J M and Huerre P 1994 Phys. Fluids 6 1768
[10] Boersma B, Brethouwer G and Nieuwstadt F 1998 Phys. Fluids 10 889
[11] Bogey C and Bailly C 2006 Phys. Fluids 18 065101
[12] KimJ and Choi H 2009 J. Fluid Mech. 620 383
[13] Mi J, Nobes D S and Nathan G J 2000 Expt. Fluids 28 93
[14] Mi J, Nathan G J and Nobes D S 2001 J. Fluids Eng. 123 878
[15] Quinn W 2006 Eur. J. Mech. B: Fluid 5 279
[16] Mi J, Kalt P, Nathan G J and Wong C Y 2007 Expt. Fluids 42 625
[17] Zaman K B M Q 1996 J. Fluid Mech. 36 1
[18] Hussain A K M F 1986 J. Fluid Mech. 173 303
[19] Grinstein F F and DeVore C R 1996 Phys. Fluids 8 1237
[20] Stanley S A, Sarkar S and Mellado J P 2002 J. Fluid Mech. 450 377
[21] Zaman K B M Q 1999 J. Fluid Mech. 383 197
[22] Antonia R A and Zhao Q 2001 Expt. Fluids 31 319
[23] Burattini P, Antonia R A, Rajagopalan S and Stephens M 2004 Expt. Fluids 37 56
[24] Babu P C and Mahesh K 2004 Phys. Fluids 16 3699
[25] Romano G P 2002 Expt. Fluids 33 323
[26] Germano M, Piomelli U, Moin P and Cabot W H 1991 Phys. Fluids A: Fluid Dyn. 3 1760
[27] Lilly D K 1992 Phys. Fluids A: Fluid Dyn. 4 633
[28] Gutmark E and Ho C M 1983 Phys. Fluids 26 2932
[29] Dimotakis P E 2000 J. Fluid Mech. 409 69
[30] Mi J, Xu M and Zhou T 2013 Phys. Fluids 25 075101
[31] Xu M Y, Zhang J P, Mi J C, Nathan G J and Kalt P A M 2013 Sci. China: Phys. Mech. Astron. 56 1176
[32] Xu M Y, Zhang J P, Mi J C, Nathan G J and Kalt P A M 2013 Chin. Phys. B 22 034701
[33] Hussain A K M F and Zedan M F 1978 Phys. Fluids 21 1100
[1] Entrainment mechanism of the cyanobacterial circadian clock induced by oxidized quinone
Ying Li(李莹), Guang-Kun Zhang(张广鹍), Zi-Gen Song(宋自根). Chin. Phys. B, 2020, 29(9): 098703.
[2] Entrainment range affected by the difference in sensitivity to light-information between two groups of SCN neurons
Bao Zhu(朱宝), Jian Zhou(周建), Mengting Jia(贾梦婷), Huijie Yang(杨会杰), Changgui Gu(顾长贵). Chin. Phys. B, 2020, 29(6): 068702.
[3] Entrainment range affected by the heterogeneity in the amplitude relaxation rate of suprachiasmatic nucleus neurons
Chang-Gui Gu(顾长贵), Ping Wang(王萍), Hui-Jie Yang(杨会杰). Chin. Phys. B, 2019, 28(1): 018701.
[4] Numerical investigation of the interaction of the turbulent dual-jet and acoustic propagation
Yi-Ming Li(李一明), Bao-Kuan Li(李宝宽), Feng-Sheng Qi(齐凤升), Xi-Chun Wang(王喜春). Chin. Phys. B, 2017, 26(2): 024701.
[5] Collective behaviors of suprachiasm nucleus neurons under different light-dark cycles
Gu Chang-Gui (顾长贵), Zhang Xin-Hua (张新华), Liu Zong-Hua (刘宗华). Chin. Phys. B, 2014, 23(7): 078702.
[6] Mean and fluctuating velocity fields of a diamond turbulent jet
Xu Min-Yi (徐敏义), Zhang Jian-Peng (张健鹏), Mi Jian-Chun (米建春), Nathan G. J., Kalt P. A. M.. Chin. Phys. B, 2013, 22(3): 034701.
[7] An open plus nonlinear closed loop control of chaotic oscillators
Chen Li-Qun (陈立群). Chin. Phys. B, 2002, 11(9): 900-904.
No Suggested Reading articles found!