Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(7): 070506    DOI: 10.1088/1674-1056/24/7/070506
GENERAL Prev   Next  

Output power analyses of an endoreversible Carnot heat engine with irreversible heat transfer processes based on generalized heat transfer law

Wu Yan-Qiu (吴艳秋)
Chongqing Three Gorges University, Chongqing 404100, China
Abstract  In this paper, an endoreversible Carnot heat engine with irreversible heat transfer processes is analyzed based on generalized heat transfer law. The applicability of the entropy generation minimization, exergy analyses method, and entransy theory to the analyses is discussed. Three numerical cases are presented. It is shown that the results obtained from the entransy theory are different from those from the entropy generation minimization, which is equivalent to the exergy analyses method. For the first case in which the application preconditions of the entropy generation minimization and entransy loss maximization are satisfied, both smaller entropy generation rate and larger entransy loss rate lead to larger output power. For the second and third cases in which the preconditions are not satisfied, the entropy generation minimization does not lead to the maximum output power, while larger entransy loss rate still leads to larger output power in the third case. For the discussed cases, the concept of entransy dissipation is not applicable for the analyses of output power. The problems in the negative comments on the entransy theory are pointed out and discussed. The related researchers are advised to focus on some new specific application cases to show if the entransy theory is the same as some other theories.
Keywords:  entropy generation      exergy destruction      entransy      endoreversible Carnot heat engine  
Received:  22 November 2014      Revised:  28 January 2015      Accepted manuscript online: 
PACS:  05.70.Ln (Nonequilibrium and irreversible thermodynamics)  
  44.90.+c (Other topics in heat transfer)  
Fund: Project supported by the Youth Programs of Chongqing Three Gorges University, China (Grant No. 13QN18).
Corresponding Authors:  Wu Yan-Qiu     E-mail:  wuyanqiu0516@126.com

Cite this article: 

Wu Yan-Qiu (吴艳秋) Output power analyses of an endoreversible Carnot heat engine with irreversible heat transfer processes based on generalized heat transfer law 2015 Chin. Phys. B 24 070506

[1] Salas N S, Velasco S and Hernández A C 2002 Energy Convers. Manage. 43 2341
[2] Açıkkalp E 2014 Energy Convers. Manage. 80 535
[3] Cheng X T and Liang X G 2013 Chin. Phys. B 22 010508
[4] Nie W, He J and Deng X 2008 Int. J. Thermal Sci. 47 633
[5] Liu X W, Chen L G, Wu F and Sun F R 2014 J. Energy Institute 87 69
[6] Guo Z Y, Zhu H Y and Liang X G 2007 Int. J. Heat Mass Transfer 50 2545
[7] Chen L G 2012 Chin. Sci. Bull. 57 4404
[8] Chen L G, Xiao Q H, Xie Z H and Sun F R 2013 Int. J. Heat Mass Transfer 67 506
[9] Chen L G, Xiao Q H, Xie Z H and Sun F R 2012 Int. Comm. Heat Mass Transfer 39 1556
[10] Feng H J, Chen L G, Xie Z H and Sun F R 2013 Sci. China: Tech. Sci. 56 299
[11] Feng H J, Chen L G and Sun F R 2012 Sci. China: Tech. Sci. 55 779
[12] Feng H J, Chen L G, Xie Z H and Sun F R 2014 Int. Commun. Heat Mass Transfer 52 26
[13] Feng H J, Chen L G, Xie Z H and Sun F R 2014 Sci. China: Tech. Sci. 57 784
[14] Feng H J, Chen L G, Xie Z H and Sun F R 2014 Chin. Sci. Bull. 59 2470
[15] Chen L G, Feng H J, Xie Z H and Sun F R 2013 Int. J. Heat Mass Transfer 67 704
[16] Zhou B, Cheng X T and Liang X G 2013 Chin. Phys. B 22 084401
[17] Yuan F and Chen Q 2011 Energy 36 5476
[18] Cheng X T, Liang X G and Xu X H 2011 Acta Phys. Sin. 60 060512 (in Chinese)
[19] Cheng X T and Liang X G 2011 Int. J. Heat Mass Transfer 54 269
[20] Cheng X T, Zhang Q Z and Liang X G 2012 Appl. Thermal Eng. 38 31
[21] Cheng X T and Liang X G 2012 Energy Convers. Manage. 58 163
[22] Cheng X T and Liang X G 2012 Energy 44 964
[23] Cheng X T and Liang X G 2012 Energy 47 421
[24] Sun C, Cheng X T and Liang X G 2014 Chin. Phys. B 23 050513
[25] Cheng X T and Liang X G 2013 Chin. Sci. Bull. 58 4696
[26] Yang A B, Chen L G, Xia S J and Sun F R 2014 Chin. Sci. Bull. 59 2031
[27] Zhu Y, Hu Z, Zhou Y, Jiang L and Yu L 2014 Energy Convers. Manage. 88 267
[28] Li T, Fu W and Zhu J 2014 Energy 72 561
[29] Cheng X T and Liang X G 2014 Int. Commun. Heat Mass Transfer 53 9
[30] Wang W H, Cheng X T and Liang X G 2013 Chin. Phys. B 22 110506
[31] Cheng X T and Liang X G 2013 Energy Buildings 67 387
[32] Cheng X T and Liang X G 2015 Int. J. Heat Mass Transfer 81 167
[33] Cheng X T and Liang X G 2014 Energy Convers. Manage. 80 238
[34] Cheng X T and Liang X G 2013 Energy Convers. Manage. 73 121
[35] Bejan A and Lorente S 2012 Chem. Eng. Processing 51 34
[36] Bejan A 2014 ASME J. Heat Transfer 136 055501
[37] Lucia U 2013 Physica A 392 1051
[38] Grazzini G, Borchiellini R and Lucia U 2013 J. Non-Equilib. Thermodyn. 38 259
[39] Grazzini G and Rocchetti A 2014 Energy Convers. Manage. 84 583
[40] Herwig H 2014 ASME J. Heat transfer 136 045501
[41] Awad M M 2014 ASME J. Heat Transfer 136 095502
[42] Awad M M 2014 Energy Convers. Manage. 88 1070
[43] Manjunath K and Kaushik S C 2014 Renew. Sust. Energ. Rev. 40 348
[44] Bejan A 2014 Ind. Eng. Chem. Res. 53 18352
[45] Bejan A 2015 Int. J. Heat Mass Transfer 81 654
[46] Chen Q, Wang M, Pan N and Guo Z Y 2012 Chem. Eng. Processing 56 35
[47] Guo Z Y 2014 ASME J. Heat Transfer 136 056001
[48] Guo Z Y, Chen Q and Liang X G 2014 ASME J. Heat Transfer 136 046001
[49] Chen Q, Guo Z Y and Liang X G 2014 ASME J. Heat Transfer 136 096001
[50] Cheng X T and Liang X G 2014 Energy Convers. Manage. 88 1072
[51] Cheng X T and Liang X G 2014 Chin. Sci. Bull. 59 5309
[52] Wu J and Guo Z Y 2014 Ind. Eng. Chem. Res. 53 18354
[53] Xia S J, Chen L G and Sun F R 2008 J. Therm. Sci. Tech. 7 226
[54] Chen L, Li J and Sun F 2008 Appl. Energy 85 52
[55] Chen L, Xia S and Sun F 2009 J. Appl. Phys. 105 44907
[56] Cheng X T and Liang X G 2014 Energy Convers. Manage. 87 1052
[57] Cheng X T and Liang X G 2013 Int. J. Heat Mass Transfer 64 903
[58] Salamon P, Hoffmann K H, Schubert S, Berry R S and Andresen B 2001 J. Non-Equilib. Thermodyn. 26 73
[59] Cheng X T, Wang W H and Liang X G 2012 Sci. China: Tech. Sci. 55 2847
[60] Oliveira S R and Milanez L F 2014 Int. J. Heat Mass Transfer 79 518
[61] Xu M T 2011 Energy 36 4272
[62] Guo Z Y 2014 Energy 68 998
[1] Physical aspects of magnetized Jeffrey nanomaterial flow with irreversibility analysis
Fazal Haq, Muhammad Ijaz Khan, Sami Ullah Khan, Khadijah M Abualnaja, and M A El-Shorbagy. Chin. Phys. B, 2022, 31(8): 084703.
[2] Uniformity principle of temperature difference field in heat transfer optimization
Xue-Tao Cheng(程雪涛), Xin-Gang Liang(梁新刚). Chin. Phys. B, 2019, 28(6): 064402.
[3] Role of entropy generation minimization in thermal optimization
Xue-Tao Cheng(程雪涛), Xin-Gang Liang(梁新刚). Chin. Phys. B, 2017, 26(12): 120505.
[4] Analyses of an air conditioning system with entropy generation minimization and entransy theory
Yan-Qiu Wu(吴艳秋), Li Cai(蔡黎), Hong-Juan Wu(吴鸿娟). Chin. Phys. B, 2016, 25(6): 060507.
[5] Optimization of combined endoreversible Carnot heat engines with different objectives
Cheng Xue-Tao (程雪涛), Liang Xin-Gang (梁新刚). Chin. Phys. B, 2015, 24(6): 060510.
[6] Entransy analyses of heat-work conversion systems with inner irreversible thermodynamic cycles
Cheng Xue-Tao (程雪涛), Liang Xin-Gang (梁新刚). Chin. Phys. B, 2015, 24(12): 120503.
[7] Output power analyses for the thermodynamic cycles of thermal power plants
Sun Chen (孙晨), Cheng Xue-Tao (程雪涛), Liang Xin-Gang (梁新刚). Chin. Phys. B, 2014, 23(5): 050513.
[8] Entropy resistance analyses of a two-stream parallel flow heat exchanger with viscous heating
Cheng Xue-Tao (程雪涛), Liang Xin-Gang (梁新刚). Chin. Phys. B, 2013, 22(8): 080509.
[9] A comparison of different entransy flow definitions and entropy generation in thermal radiation optimization
Zhou Bing (周兵), Cheng Xue-Tao (程雪涛), Liang Xin-Gang (梁新刚). Chin. Phys. B, 2013, 22(8): 084401.
[10] Optimization of fin geometry in heat convection with entransy theory
Cheng Xue-Tao (程雪涛), Zhang Qin-Zhao (张勤昭), Xu Xiang-Hua (徐向华), Liang Xin-Gang (梁新刚). Chin. Phys. B, 2013, 22(2): 020503.
[11] Analyses of the endoreversible Carnot cycle with entropy theory and entransy theory
Wang Wen-Hua (王文华), Cheng Xue-Tao (程雪涛), Liang Xin-Gang (梁新刚). Chin. Phys. B, 2013, 22(11): 110506.
[12] Applicability of minimum entropy generation methodto optimizing thermodynamic cycles
Cheng Xue-Tao (程雪涛), Liang Xin-Gang (梁新刚). Chin. Phys. B, 2013, 22(1): 010508.
No Suggested Reading articles found!