Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(12): 120503    DOI: 10.1088/1674-1056/24/12/120503
GENERAL Prev   Next  

Entransy analyses of heat-work conversion systems with inner irreversible thermodynamic cycles

Cheng Xue-Tao (程雪涛), Liang Xin-Gang (梁新刚)
Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
Abstract  In this paper, we try to use the entransy theory to analyze the heat-work conversion systems with inner irreversible thermodynamic cycles. First, the inner irreversible thermodynamic cycles are analyzed. The influences of different inner irreversible factors on entransy loss are discussed. We find that the concept of entransy loss can be used to analyze the inner irreversible thermodynamic cycles. Then, we analyze the common heat-work conversion systems with inner irreversible thermodynamic cycles. As an example, the heat-work conversion system in which the working fluid of the thermodynamic cycles is heated and cooled by streams is analyzed. Our analyses show that larger entransy loss leads to larger output work when the total heat flow from the high temperature heat source and the corresponding equivalent temperature are fixed. Some numerical cases are presented, and the results verify the theoretical analyses. On the other hand, it is also found that larger entransy loss does not always lead to larger output work when the preconditions are not satisfied.
Keywords:  entransy loss      heat-work conversion      inner irreversible thermodynamic cycle      analyses  
Received:  08 June 2015      Revised:  13 August 2015      Accepted manuscript online: 
PACS:  05.70.Ln (Nonequilibrium and irreversible thermodynamics)  
  44.90.+c (Other topics in heat transfer)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51376101 and 51356001).
Corresponding Authors:  Cheng Xue-Tao     E-mail:  chengxt02@gmail.com

Cite this article: 

Cheng Xue-Tao (程雪涛), Liang Xin-Gang (梁新刚) Entransy analyses of heat-work conversion systems with inner irreversible thermodynamic cycles 2015 Chin. Phys. B 24 120503

[1] Guo Z Y, Zhu H Y and Liang X G 2007 Int. J. Heat Mass Transfer 50 2545
[2] Bergles A E 1981 Application of Heat Transfer Augmentation (Washington: Hemisphere Pub. Co.)
[3] Cheng X T, Zhang Q Z, Xu X H and Liang X G 2013 Chin. Phys. B 22 020503
[4] Webb R L 1995 Principles of Enhanced Heat Transfer (Washington: Hemisphere Pub. Co.)
[5] Chen L G 2012 Chin. Sci. Bull. 57 4404
[6] Chen L G, Xiao Q H, Xie Z H and Sun F R 2013 Int. J. Heat Mass Transfer 67 506
[7] Chen L G, Xiao Q H, Xie Z H and Sun F R 2012 Int. Commun. Heat Mass Transfer 39 1556
[8] Liu W, Liu Z C, Jia H, Fan A W and Nakayama A 2011 Int. J. Heat Mass Transfer 54 3049
[9] Cheng X T and Liang X G 2011 Int. J. Heat Mass Transfer 54 269
[10] G Guo Z Y, Liu X B, Tao W Q and Shah R K 2010 Int. J. Heat Mass Transfer 53 2877
[11] Cheng X T and Liang X G 2012 Energy 44 964
[12] Yang A B, Chen L G, Xiao S J and Sun F R 2014 Chin. Sci. Bull. 59 2031
[13] Zhu Y, Hu Z, Zhou Y, Jiang L and Yu L 2014 Energy Convers. Manag. 88 267
[14] Li T, Fu W and Zhu J 2014 Energy 72 561
[15] Cheng X T and Liang X G 2014 Int. Commun. Heat Mass 53 9
[16] Cheng X T and Liang X G 2013 Int. J. Heat Mass Transfer 62 174
[17] Cheng X T, Liang X G and Guo Z Y 2011 Chin. Sci. Bull. 56 847
[18] Wu J and Cheng X T 2013 Int. J. Heat Mass Transfer 58 374
[19] Li X F, Guo J F, Xu M T and Cheng L 2011 Chin. Sci. Bull. 56 2174
[20] Cheng X T and Liang X G 2012 Energy 46 386
[21] Cheng X T and Liang X G 2013 Int. J. Heat Mass Transfer 64 903
[22] Cheng X T and Liang X G 2015 Chin. Phys. B 24 060510
[23] Sun C, Cheng X T and Liang X G 2014 Chin. Phys. B 23 050513
[24] Wang W H, Cheng X T and Liang X G 2013 Energy Convers. Manag. 68 82
[25] Cheng X T and Liang X G 2014 Chin. Sci. Bull. 59 5309
[26] Cheng X T and Liang X G 2013 J. Thermal Sci. Tech. 8 337
[27] Cheng X T and Liang X G 2012 Energy 47 421
[1] Time-resolved shadowgraphs and morphology analyses of aluminum ablation with multiple femtosecond laser pulses
Zehua Wu(吴泽华), Nan Zhang(张楠), Xiaonong Zhu(朱晓农), Liqun An(安力群), Gangzhi Wang(王刚志), Ming Tan(谭明). Chin. Phys. B, 2018, 27(7): 077901.
[2] Role of entropy generation minimization in thermal optimization
Xue-Tao Cheng(程雪涛), Xin-Gang Liang(梁新刚). Chin. Phys. B, 2017, 26(12): 120505.
[3] Analyses of an air conditioning system with entropy generation minimization and entransy theory
Yan-Qiu Wu(吴艳秋), Li Cai(蔡黎), Hong-Juan Wu(吴鸿娟). Chin. Phys. B, 2016, 25(6): 060507.
[4] Output power analyses for the thermodynamic cycles of thermal power plants
Sun Chen (孙晨), Cheng Xue-Tao (程雪涛), Liang Xin-Gang (梁新刚). Chin. Phys. B, 2014, 23(5): 050513.
[5] Numerical simulation of a triple-junction thin-film solar cell based on μc-Si1-xGex:H
Huang Zhen-Hua (黄振华), Zhang Jian-Jun (张建军), Ni Jian (倪牮), Cao Yu (曹宇), Hu Zi-Yang (胡子阳), Li Chao (李超), Geng Xin-Hua (耿新华), Zhao Ying (赵颖). Chin. Phys. B, 2013, 22(9): 098803.
[6] Entropy resistance analyses of a two-stream parallel flow heat exchanger with viscous heating
Cheng Xue-Tao (程雪涛), Liang Xin-Gang (梁新刚). Chin. Phys. B, 2013, 22(8): 080509.
[7] Analyses of the endoreversible Carnot cycle with entropy theory and entransy theory
Wang Wen-Hua (王文华), Cheng Xue-Tao (程雪涛), Liang Xin-Gang (梁新刚). Chin. Phys. B, 2013, 22(11): 110506.
[8] Applicability of minimum entropy generation methodto optimizing thermodynamic cycles
Cheng Xue-Tao (程雪涛), Liang Xin-Gang (梁新刚). Chin. Phys. B, 2013, 22(1): 010508.
No Suggested Reading articles found!