Asymmetric resistive switching processes were observed in W:AlOx/WOy bilayer RRAM devices. During pulse programming measurements, the RESET speed is in the range of hundreds of microseconds under -1.1 V bias, while the SET speed is in the range of tens of nanoseconds under 1.2 V bias. Electrical measurements with different pulse conditions and different temperatures were carried out to understand these significant differences in switching time. A redox reaction model in the W:AlOx/WOy device structure is proposed to explain this switching time difference.
Wu Hua-Qiang (吴华强), Wu Ming-Hao (吴明昊), Li Xin-Yi (李辛毅), Bai Yue (白越), Deng Ning (邓宁), Yu Zhi-Ping (余志平), Qian He (钱鹤) Asymmetric resistive switching processes in W:AlOx/WOy bilayer devices 2015 Chin. Phys. B 24 058501
[1]
Lee M J, Lee C B, Lee D, Lee S R, Man C, Ji H H, Kim Y B, Kim C J, Seo D H, Seo S, Chung U I, Yoo I K and Kim K 2011 Nat. Mater. 10 625
[2]
Wong H S P, Lee H Y, Chen Y S, Wu Y, Chen P S, Lee B, Chen F T and Tsai M J 2012 IEEE Proc. 100 1951
[3]
Govoreanu B, Kar G S, Chen Y, et al. 2011 IEDM Tech. Dig. 729
[4]
Chien W C, Lee M H, Lee F M, Lin Y Y, Lung H L, Hsieh K Y and Lu C Y 2011 IEDM Tech. Dig. 725
[5]
Chien W C, Chen Y R, Chen Y C, Chuang A T H, Lee F M, Lin Y Y, Lai E K, Shih Y H, Hsieh K Y and Lu CY 2010 IEDM Tech. Dig. 440
[6]
Alexandrov A S, Bratkovsky A M, Bridle B, Savel S E, Strukov D B and Williams R S 2011 Appl. Phys. Lett. 99 202104
[7]
Ielmini D 2011 IEDM Tech. Dig. 409
[8]
Li Y T, LV S B, Lv H B, Liu Q, Wang Q, Wang Y, Zhang S, Lian WT, Liu S and Liu M 2011 Chin. Phys. B 20 017305
[9]
Ielmini D 2013 Resistive Switching Models by Ion Migration in Metal Oxides (New York: Springer) p. 169
[10]
Long S B, Lian X B, Cagli C, Cartoixa X, Riccardo R, Enrique M, Jimenez D, Luca P, Liu M and Sunñé J 2013 Appl. Phys. Lett. 102 183505
[11]
Long S B, Lian X B, Ye T B, Cagli C, Perniola L, Miranda E, Liu M and Suñé J 2013 IEEE Electron Dev. Lett. 34 623
[12]
Larentis S, Nardi F, Balatti S, Gilmer D C and Ielmini D 2012 IEEE Trans. Electron Dev. 59 2468
[13]
Ramu A T and Strukov D B 2013 IEEE Trans. Electron Dev. 60 1938
[14]
Long S B, Perniola L, Cagli C, Buckley J, Lian X J, Miranda E, Pan F, Liu M and Sunñé J 2013 Sci. Rep. 3 1
[15]
Ielmini D 2011 IEEE Trans. Electron Dev. 58 4309
[16]
Chen Y Y, Govoreanu B, Goux L, Degraeve R, Fantini A, Kar G S, Wouters D J, Groeseneken G, Kittl J A, Jurczak M and Altimime L 2012 IEEE Trans. Electron Dev. 59 3243
[17]
Bai Y, Wu H Q, Zhang Y, Wu M H, Zhang J Y, Deng N and Qian H 2013 Appl. Phys. Lett. 102 173503
[18]
Zhang Y, Wu H Q, Bai Y, Chen A, Yu Z P, Zhang J Y and Qian H 2013 Appl. Phys. Lett. 102 233502
[19]
Kim S, Kim S J, Kim K M, Lee S R, Chang M, Cho E, Kim Y B, Kim C J, Chung U I and Yoo I K 2013 Scientific Reports 3 1680
[20]
David W O 2011 Principles of Modern Chemistry (7th edn.) p. 546
Resistive switching characteristics of Ti/ZrO2/Pt RRAM device Lei Xiao-Yi (雷晓艺), Liu Hong-Xia (刘红侠), Gao Hai-Xia (高海霞), Yang Ha-Ni (杨哈妮), Wang Guo-Ming (王国明), Long Shi-Bing (龙世兵), Ma Xiao-Hua (马晓华), Liu Ming (刘明). Chin. Phys. B, 2014, 23(11): 117305.
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.