Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(5): 050505    DOI: 10.1088/1674-1056/24/5/050505
GENERAL Prev   Next  

Complex transitions between spike, burst or chaos synchronization states in coupled neurons with coexisting bursting patterns

Gu Hua-Guang (古华光)a, Chen Sheng-Gen (陈胜根)a, Li Yu-Ye (李玉叶)b
a School of Aerospace Engineering and Applied Mechanic, Tongji University, Shanghai 200092, China;
b Mathematics & Statistics Institute, Chifeng University, Chifeng 024000, China
Abstract  We investigated the synchronization dynamics of a coupled neuronal system composed of two identical Chay model neurons. The Chay model showed coexisting period-1 and period-2 bursting patterns as a parameter and initial values are varied. We simulated multiple periodic and chaotic bursting patterns with non-(NS), burst phase (BS), spike phase (SS), complete (CS), and lag synchronization states. When the coexisting behavior is near period-2 bursting, the transitions of synchronization states of the coupled system follows very complex transitions that begins with transitions between BS and SS, moves to transitions between CS and SS, and to CS. Most initial values lead to the CS state of period-2 bursting while only a few lead to the CS state of period-1 bursting. When the coexisting behavior is near period-1 bursting, the transitions begin with NS, move to transitions between SS and BS, to transitions between SS and CS, and then to CS. Most initial values lead to the CS state of period-1 bursting but a few lead to the CS state of period-2 bursting. The BS was identified as chaos synchronization. The patterns for NS and transitions between BS and SS are insensitive to initial values. The patterns for transitions between CS and SS and the CS state are sensitive to them. The number of spikes per burst of non-CS bursting increases with increasing coupling strength. These results not only reveal the initial value- and parameter-dependent synchronization transitions of coupled systems with coexisting behaviors, but also facilitate interpretation of various bursting patterns and synchronization transitions generated in the nervous system with weak coupling strength.
Keywords:  synchronization transition      phase synchronization      coexisting attractors      coupled neuronal system  
Received:  02 September 2014      Revised:  15 October 2014      Accepted manuscript online: 
PACS:  05.45.Xt (Synchronization; coupled oscillators)  
  87.18.Tt (Noise in biological systems)  
  87.18.Hf (Spatiotemporal pattern formation in cellular populations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11372224 and 11402039) and the Fundamental Research Funds for Central Universities designated to Tongji University (Grant No. 1330219127).
Corresponding Authors:  Gu Hua-Guang     E-mail:  guhuaguang@tongji.edu.cn
About author:  05.45.Xt; 87.18.Tt; 87.18.Hf

Cite this article: 

Gu Hua-Guang (古华光), Chen Sheng-Gen (陈胜根), Li Yu-Ye (李玉叶) Complex transitions between spike, burst or chaos synchronization states in coupled neurons with coexisting bursting patterns 2015 Chin. Phys. B 24 050505

[1] Arenas A, Díaz-Guilera A, Kurths J, Moreno Y and Zhou C S 2008 Phys. Rep. 469 93
[2] Glass L 2001 Nature 410 27
[3] Pecora L M and Carroll T L 1990 Phys. Rev. Lett. 64 821
[4] Singer W and Gray C M 1995 Annu. Rev. Neurosci. 18 555
[5] Llinás R and Ribary U 1993 Proc. Natl. Acad. Sci. USA 90 2078
[6] Hartline D K 1979 Biol. Cybern. 33 223
[7] Kim K H, Yoon J, Kim J H and Junq K Y 2008 Brain Res. 1236 105
[8] Choi J W, Jung K Y, Kim C H and Kim K H 2010 Neurosci. Lett. 468 156
[9] Bartsch R, Kantelhardt J W, Penzel T and Havlin S 2007 Phys. Rev. Lett. 98 54102
[10] Buzsáki G and Draguhn A 2004 Science 304 1926
[11] Gray C M, König P, Engel A K and Singer W 1989 Nature 338 334
[12] Jefferys J G and Haas H L 1982 Nature 300 448
[13] Kepecs A, Wang X J and Lisman J 2002 J. Neurosci. 22 9053
[14] Kepecs A and Lisman J 2003 Network 14 103
[15] Sun X J, Lei J Z, Perc M, Kurths J and Chen G R 2011 Chaos 21 016110
[16] Ando H, Suetani H, Kurths J and Aihara K 2012 Phys. Rev. E 86 016205
[17] Batista C A, Viana R L, Ferrari F A, Lopes S R, Batista A M and Coninck J C 2013 Phys. Rev. E 87 042713
[18] Gu H G, Pan B B and Xu J 2014 EPL 106 50003
[19] Gu H G, Li Y Y, Jia B and Chen G R 2013 Physica A 392 3281
[20] Droz M and Lipowski A 2003 Phys. Rev. E 67 056204
[21] Liang X, Tang M, Dhamala M and Liu Z 2009 Phys. Rev. E 80 066202
[22] Wang Q Y, Chen G R and Perc M 2011 PLoS One 6 e15851
[23] Ozbudak E M, Thattai M, Lim H N, Shraiman B I and Van Oudenaarden A 2004 Nature 427 737
[24] Guttman R, Lewis S and Rinzel J 1980 J. Physiol. 30 377
[25] Izhikevich E M 2000 Int. J. Bifurcat. Chaos 10 1171
[26] Tateno T and Pakdaman K 2004 Chaos 14 511
[27] Lechner H A, Baxter D A, Clark J W and Byrne J H 1996 J. Neurophysiol. 75 957
[28] Fröhlich F and Bazhenov M 2006 Phys. Rev. E 74 031922
[29] Cymbalyuk G and Shilnikov A 2005 J. Comput. Neurosci. 18 255
[30] Xu Y L, Yang M H, Liu Z Q, Liu H J, Gu H G and Ren W 2007 Dyn. Contin. Discrete Impuls. Syst. Ser. B 14 35
[31] Pisarchik A N, Jaimes-Reátegui R and García-López J H 2008 Phil. Trans. R. Soc. A 366 459
[32] Pisarchik A N, Jaimes-Rem átegui R and García-López J H 2008 Int. J. Bifurcat. Chaos 18 1801
[33] Pisarchik A N, Jaimes-Reátegui R, Villalobos-Salazar J R, García-López J H and Boccaletti S 2006 Phys. Rev. Lett. 96 244102
[34] Sausedo-Solorio J M and Pisarchik A N 2011 Phys. Lett. A 375 3677
[35] Ruiz-Oliveras F R and Pisarchik A N 2009 Phys. Rev. E 79 016202
[36] Wang Q Y, Duan Z S, Feng Z S, Chen G R and Lu Q S 2008 Physica A 387 4404
[37] Gu H G, Li Y Y, Jia B and Chen G R 2013 Physica A 392 3281
[38] Bing J 2014 Chin. Phys. B 23 050510
[39] Chay T R 1985 Physica D 16 233
[40] Gu H G 2013 Chaos 23 023126
[41] Gu H G and Xiao W W 2014 Int. J. Bifurcat. Chaos 24 1450082
[42] Gu H G, Ren W, Lu Q S, Wu S G and Chen W J 2001 Phys. Lett. A 285 63
[43] Hestrin S and Galarreta M 2005 Trends Neurosci. 28 304
[44] Chow C and Kopell N 2000 Neural Comput. 12 1643
[45] Wang H J, Huang H B and Qi G X 2005 Phys. Rev. E 72 037203
[46] Pikovsky A, Zaks M, Rosenblum M, Osipov G and Kurths J 1997 Chaos 7 680
[47] Chen J Y, Wong K W and Shuai J W 2002 Phys. Rev. E 66 056203
[48] Taherion S and Lai Y C 1999 Phys. Rev. E 59 6247
[49] Corron N J, Blakely J N and Pethel S D 2005 Chaos 15 023110
[50] Wu X and Ma J 2013 PLoS One 8 e55403
[51] Ma J, Huang L, Wang C N and Pu Z S 2013 Commun. Theor. Phys. 59 233
[1] Hopf bifurcation and phase synchronization in memristor-coupled Hindmarsh-Rose and FitzHugh-Nagumo neurons with two time delays
Zhan-Hong Guo(郭展宏), Zhi-Jun Li(李志军), Meng-Jiao Wang(王梦蛟), and Ming-Lin Ma(马铭磷). Chin. Phys. B, 2023, 32(3): 038701.
[2] A memristive map with coexisting chaos and hyperchaos
Sixiao Kong(孔思晓), Chunbiao Li(李春彪), Shaobo He(贺少波), Serdar Çiçek, and Qiang Lai(赖强). Chin. Phys. B, 2021, 30(11): 110502.
[3] A novel class of two-dimensional chaotic maps with infinitely many coexisting attractors
Li-Ping Zhang(张丽萍), Yang Liu(刘洋), Zhou-Chao Wei(魏周超), Hai-Bo Jiang(姜海波), Qin-Sheng Bi(毕勤胜). Chin. Phys. B, 2020, 29(6): 060501.
[4] Multistability and coexisting transient chaos in a simple memcapacitive system
Fu-Ping Wang(王富平), Fa-Qiang Wang(王发强). Chin. Phys. B, 2020, 29(5): 058502.
[5] Dynamics of the two-SBT-memristor-based chaotic circuit
Mei Guo(郭梅), Meng Zhang(张萌), Ming-Long Dou(窦明龙), Gang Dou(窦刚), and Yu-Xia Li(李玉霞). Chin. Phys. B, 2020, 29(11): 110505.
[6] Cross-frequency network analysis of functional brain connectivity in temporal lobe epilepsy
Hai-Tao Yu(于海涛), Li-Hui Cai(蔡立辉), Xin-Yu Wu(武欣昱), Jiang Wang(王江), Jing Liu(刘静), Hong Zhang(张宏). Chin. Phys. B, 2019, 28(4): 048702.
[7] Effects of channel noise on synchronization transitions in delayed scale-free network of stochastic Hodgkin-Huxley neurons
Wang Bao-Ying (王宝英), Gong Yu-Bing (龚玉兵). Chin. Phys. B, 2015, 24(11): 118702.
[8] Collective dynamics in a non-dissipative two-coupled pendulum system
Chen Zi-Chen (陈子辰), Li Bo (李博), Qiu Hai-Bo (邱海波), Xi Xiao-Qiang (惠小强). Chin. Phys. B, 2014, 23(5): 050506.
[9] Phase synchronization and synchronization frequency of two-coupled van der Pol oscillators with delayed coupling
Hossein Gholizade-Narm, Asad Azemi, Morteza Khademi. Chin. Phys. B, 2013, 22(7): 070502.
[10] Explosive synchronization of complex networks with different chaotic oscillators
Zhao Jun-Chan (赵军产). Chin. Phys. B, 2013, 22(6): 060506.
[11] Analysis of a phase synchronized functional network based on the rhythm of brain activities
Li Ling(李凌), Jin Zhen-Lan(金贞兰), and Li Bin(李斌) . Chin. Phys. B, 2011, 20(3): 038701.
[12] Phase synchronization and its transition in two coupled bursting neurons: theoretical and numerical analysis
Wang Hai-Xia(王海侠), Lu Qi-Shao(陆启韶), and Shi Xia(石霞). Chin. Phys. B, 2010, 19(6): 060509.
[13] Phase synchronization on small-world networks with community structure
Wang Xiao-Hua(王晓华), Jiao Li-Cheng(焦李成), and Wu Jian-She(吴建设). Chin. Phys. B, 2010, 19(2): 020501.
[14] Random shortcuts induce phase synchronization in complex Chua systems
Wei Du-Qu(韦笃取), Luo Xiao-Shu(罗晓曙), and Qin Ying-Hua(覃英华). Chin. Phys. B, 2009, 18(6): 2184-2187.
[15] Complete and phase synchronization in a heterogeneous small-world neuronal network
Han Fang(韩芳), Lu Qi-Shao(陆启韶), Wiercigroch Marian, and Ji Quan-Bao(季全宝). Chin. Phys. B, 2009, 18(2): 482-488.
No Suggested Reading articles found!