Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(4): 047502    DOI: 10.1088/1674-1056/24/4/047502
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Model of hybrid interfacial domain wall in ferromagnetic/antiferromagnetic bilayers

Zhang Wen (章文)a, Zhai Ya (翟亚)a, Lu Mu (鹿牧)b, You Biao (游彪)b, Zhai Hong-Ru (翟宏如)b, Caroline G Morganc
a Department of Physics, Southeast University, Nanjing 211189, China;
b National Laboratory of Solid Microstructure, Nanjing University, Nanjing 210093, China;
c Physics Department, Wayne State University, Detroit, MI 48202, USA
Abstract  

A general model of a hybrid interfacial domain wall (HIDW) in ferromagnetic/antiferromagnetic exchange biased bilayers is proposed, where an interfacial domain wall is allowed to extend into either the ferromagnetic or antiferromagnetic layer or across both. The proposition is based on our theoretical investigation on thickness and field dependences of ferromagnetic domain wall (FMDW) and antiferromagnetic domain wall (AFDW), respectively. Good match of the simulation to the hysteresis loops of a series of NiFe/FeMn exchange-biased bilayers confirms the existence of the HIDW, where the AFDW part is found to preferentially occupy the entire antiferromagnetic layer while the FMDW shrinks with the increased magnetic field as expected. The observed asymmetry between the ascending and descending branches of the hysteresis loop is explained naturally as a consequence of different partition ratios between AFDW and FMDW.

Keywords:  exchange bias      interfacial domain wall      ferromagnetic/antiferromagnetic bilayer  
Received:  15 September 2014      Revised:  25 September 2014      Accepted manuscript online: 
PACS:  75.60.Ch (Domain walls and domain structure)  
  75.60.Ej (Magnetization curves, hysteresis, Barkhausen and related effects)  
  75.70.Cn (Magnetic properties of interfaces (multilayers, superlattices, heterostructures))  
  75.70.-i (Magnetic properties of thin films, surfaces, and interfaces)  
Fund: 

Project supported by the National Basic Research Program, China (Grant No. 2010CB923404), the National Natural Science Foundation for Young Scientists of China (Grant No. 61306121), and the China Postdoctoral Science Foundation (Grant No. 2013M541580).

Corresponding Authors:  Zhai Ya     E-mail:  yazhai@seu.edu.cn

Cite this article: 

Zhang Wen (章文), Zhai Ya (翟亚), Lu Mu (鹿牧), You Biao (游彪), Zhai Hong-Ru (翟宏如), Caroline G Morgan Model of hybrid interfacial domain wall in ferromagnetic/antiferromagnetic bilayers 2015 Chin. Phys. B 24 047502

[1] Radu F, Etzkorn M, Siebrecht R, Schmitte T, Westerholt K and Zabel H 2003 Phys. Rev. B 67 134409
[2] Li Z P, Petracic O, Morales R, Olamit J, Batlle X, Liu K and Schuller I K 2006 Phys. Rev. Lett. 96 217205
[3] Kiwi M, Mejía-López J, Portugal R D and Ramírez R 1999 Appl. Phys. Lett. 75 3995
[4] Stamps R L and Usadel K D 2006 Europhys. Lett. 74 512
[5] Lin J, Shi Z, Zhou S M, Zhang X and Xia Y J 2009 Chin. Phys. Lett. 26 107501
[6] Zhu J R, Xiang M and Hu J G 2012 Acta Phys. Sin. 61 187504 (in Chinese)
[7] Shahzad F, Siddiqi S A, Im M Y, Avallone A, Fischer P, Hussain Z, Siddiqi I and Hellman F 2010 Chin. Phys. B 19 037504
[8] Qi X J, Wang Y G, Zhou G H, Li Z Q and Guo M 2010 Chin. Phys. B 19 037503
[9] Stiles M D and McMichael R D 1999 Phys. Rev. B 59 3722
[10] Néel L 1967 Ann. Phys. 2 61
[11] Mauri D, Siegmann H C, Bagus P S and Kay E 1987 J. Appl. Phys. 62 3047
[12] Molozemoff A P 1987 Phys. Rev. B 35 3679
[13] Slonczewski J C 1995 J. Magn. Magn. Mater. 150 13
[14] Koon N C 1997 Phys. Rev. Lett. 78 4865
[15] Schulthess T C and Butler W H 1998 Phys. Rev. Lett. 81 4516
[16] Scholl A, Liberati M, Arenholz E, Ohldag H and Stöhr J 2004 Phys. Rev. Lett. 92 247201
[17] Geshev J, Pereira L G and Schmidt J E 2001 Phys. Rev. B 64 184411
[18] Gloanec M, Rioual S, Lescop B, Zuberek R, Szymczak R, Aleshkevych P and Rouvellou B 2010 Phys. Rev. B 82 144433
[19] Yang F Y and Chien C L 2000 Phys. Rev. Lett. 85 2597
[20] Ball A R, Leenaers A J G, van der Zaag P J, Shaw K A, Singer B, Lind D M, Fredrikze H and Rekveldt M Th 1996 Appl. Phys. Lett. 69 1489
[21] Miller B H and Dan Dahlberg E 1996 Appl. Phys. Lett. 69 3932
[22] Nagamine L C C M, Schmidt J E, Baibich M N, Saitovitch E B and Geshev J 2006 Phys. B: Condens. Matter 384 132
[23] Mejia-Lopez J and Ramírez R 2002 J. Magn. Magn. Mater. 241 364
[24] Kiwi M, Mejía-López J, Portugal R D and Ramírez R 1999 Europphys. Lett. 48 573
[25] Morosov A I and Sigov A S 2003 J. Magn. Magn. Mater. 258 388
[26] Leighton C, Nogués J, Suhl H and Schuller I K 1999 Phys. Rev. B 60 12837
[27] Romanens F, Pizzini S, Yokaichiya F, Bonfim M, Pennec Y, Camarero J, Vogel J, Sort J, Garcia F, Rodmacq B and Dieny B 2005 Phys. Rev. B 72 134410
[28] Arenholz E, Liu K, Li Z and Schuller I K 2006 Appl. Phys. Lett. 88 072503
[29] Yamato T, Kume T, Kato T, Tsunashima S, Nakamura T, Fujiwara Y and Iwata S 2006 J. Appl. Phys. 100 113907
[30] Paul A, Kentzinger E, Rücker U and Brückel T 2006 Phys. Rev. B 74 054424
[31] Guo Z B, Wu Y H, Qiu J J, Zong B Y and Han G C 2008 Phys. Rev. B 78 184413
[32] Parkin S S P, Deline V R, Hilleke R O and Felcher G P 1990 Phys. Rev. B 42 10583
[33] Tsang C, Heiman N and Lee K 1981 J. Appl. Phys. 52 2471
[34] Zhang W 2005 MSc Thesis (Nanjing: Southeast University)
[35] Mauri D, Kay E, Scholl D and Howard J K 1987 J. Appl. Phys. 62 2929
[36] Zijlstra H 1979 IEEE. Trans. Magn. 15 1246
[37] Shirobokov M Y 1939 Bulletins of the Russian Academy of Sciences: Physics 24 426
[38] Shirobokov M Y 1945 J. Exp. Theor. Phys. 15 57
[39] Aharoni A 1993 Phys. Rev. B 47 8296
[40] Moyerman S, Gannett W, Borchers J, Doucet M, Carey M, Sparks P, Eckert J 2006 IEEE Trans. Magn. 42 2630
[41] Hubert A and Schafer R 1998 Magnetic Domains – the Analysis of Magnetic Microstructures (New York: Springer) p. 219 ISBN 978-3-540-64108-7
[42] Lilley B A 1950 Philos. Mag. 41 792
[43] Geshev J 2000 Phys. Rev. B 62 5627
[44] Berkowitz A E and Takano K 1999 J. Magn. Magn. Mater. 200 552
[45] Zhao G P, Zhao M G, Lim H S, Feng Y P and Ong C K 2005 Appl. Phys. Lett. 87 162513
[46] Zhao G P, Deng Y, Zhang H W, Chen L, Feng Y P and Bo N 2010 J. Appl. Phys. 108 093928
[1] Perpendicular magnetization and exchange bias in epitaxial NiO/[Ni/Pt]2 multilayers
Lin-Ao Huang(黄林傲), Mei-Yu Wang(王梅雨), Peng Wang(王鹏), Yuan Yuan(袁源), Ruo-Bai Liu(刘若柏), Tian-Yu Liu(刘天宇), Yu Lu(卢羽), Jia-Rui Chen(陈家瑞), Lu-Jun Wei(魏陆军), Wei Zhang(张维), Biao You(游彪), Qing-Yu Xu(徐庆宇), and Jun Du(杜军). Chin. Phys. B, 2022, 31(2): 027506.
[2] Influence of temperature on thermal relaxation of exchange bias field in CoFe/Cu/CoFe/IrMn spin valve
Xian-Jin Qi(祁先进), Ni-Na Yang(杨妮娜), Xiao-Xu Duan(段孝旭), and Xue-Zhu Li(李雪竹). Chin. Phys. B, 2021, 30(10): 107501.
[3] Electrostatic switch of magnetic core-shell in 0-3 type LSMO/PZT composite film
Bo Chen(陈波), Zi-Run Li(李滋润), Chuan-Fu Huang(黄传甫), Yong-Mei Zhang(张永梅). Chin. Phys. B, 2020, 29(9): 097702.
[4] Room-temperature electric control of exchange bias effect in CoO1-δ/Co films using Pb(Mg1/3Nb2/3)0.7Ti0.3O3 (110) substrates
Xin Wen(闻馨), Rui Wu(吴锐), Wen-Yun Yang(杨文云), Chang-Sheng Wang(王常生), Shun-Quan Liu(刘顺荃), Jing-Zhi Han(韩景智), Jin-Bo Yang(杨金波). Chin. Phys. B, 2020, 29(9): 098503.
[5] Spin glassy behavior and large exchange bias effect in cubic perovskite Ba0.8Sr0.2FeO3-δ
Yu-Xuan Liu(刘宇轩), Zhe-Hong Liu(刘哲宏), Xu-Bin Ye(叶旭斌), Xu-Dong Shen(申旭东), Xiao Wang(王潇), Bo-Wen Zhou(周博文), Guang-Hui Zhou(周光辉), You-Wen Long(龙有文). Chin. Phys. B, 2019, 28(6): 068104.
[6] Antiferromagnetic interlayer coupling of (111)-oriented La0.67Sr0.33MnO3/SrRuO3 superlattices
Hui Zhang(张慧), Jing Zhang(张静), Jin-E Zhang(张金娥), Fu-Rong Han(韩福荣), Hai-Lin Huang(黄海林), Jing-Hua Song(宋京华), Bao-Gen Shen(沈保根), Ji-Rong Sun(孙继荣). Chin. Phys. B, 2019, 28(3): 037501.
[7] Investigation of magnetization reversal process in pinned CoFeB thin film by in-situ Lorentz TEM
Ke Pei(裴科), Wei-Xing Xia(夏卫星), Bao-Min Wang(王保敏), Xing-Cheng Wen(文兴成), Ping Sheng(盛萍), Jia-Ping Liu(刘家平), Xin-Cai Liu(刘新才), Run-Wei Li(李润伟). Chin. Phys. B, 2018, 27(4): 047502.
[8] Magnetoresistance and exchange bias in high Mn content melt-spun Mn46Ni42Sn11Sb1 alloy ribbon
Qingxue Huang(黄庆学), Fenghua Chen(陈峰华), Mingang Zhang(张敏刚), Xiaohong Xu(许小红). Chin. Phys. B, 2016, 25(5): 057305.
[9] Size-dependent exchange bias in single phase Mn3O4 nanoparticles
Song-Wei Wang(王松伟), Xin Zhang(张鑫), Rong Yao(姚蓉), Guang-Hui Rao(饶光辉). Chin. Phys. B, 2016, 25(11): 117502.
[10] High coercivity in large exchange-bias Co/CoO-MgO nano-granular films
Ge Chuan-Nan (葛传楠), Wan Xian-Gang (万贤纲), Eric Pellegrin, Hu Zhi-Wei (胡志伟), Wen-I Liang, Michael Bruns, Zou Wen-Qin (邹文琴), Du You-Wei (都有为). Chin. Phys. B, 2015, 24(3): 034501.
[11] Multiferroic properties and exchange bias in Bi1-xSrxFeO3 (x=0-0.6) ceramics
Ma Zheng-Zheng (马争争), Li Jian-Qing (李建青), Chen Zi-Peng (陈子鹏), Tian Zhao-Ming (田召明), Hu Xiao-Jun (胡晓军), Huang Hai-Jun (黄海军). Chin. Phys. B, 2014, 23(9): 097505.
[12] Types of the jump phenomenon in the angular dependence of the noncollinear exchange bias
Yang Hong-Ping (杨红萍), Bai Yu-Hao (白宇浩). Chin. Phys. B, 2014, 23(6): 067503.
[13] Exchange bias in ferromagnet/antiferromagnet bilayers
Shi Zhong (时钟), Du Jun (杜军), Zhou Shi-Ming (周仕明). Chin. Phys. B, 2014, 23(2): 027503.
[14] Multiple sign reversals of the exchange bias field in polycrystalline SmCr0.9Fe0.1O3
Fang Yong (房勇), Yan Shi-Ming (颜士明), Gong Yuan-Yuan (龚元元), Zhu Wei-Li (朱卫利), Cao Qing-Qi (曹庆琪), Wang Dun-Hui (王敦辉), Du You-Wei (都有为). Chin. Phys. B, 2014, 23(12): 127502.
[15] Asymmetric exchange bias training effect in spin glass (FeAu)/FeNi bilayers
Rui Wen-Bin (芮文彬), He Mao-Cheng (何茂诚), You Biao (游彪), Shi Zhong (时钟), Zhou Shi-Ming (周仕明), Xiao Ming-Wen (肖明文), Gao Yuan (高远), Zhang Wei (张维), Sun Li (孙力), Du Jun (杜军). Chin. Phys. B, 2014, 23(10): 107502.
No Suggested Reading articles found!