Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(3): 030504    DOI: 10.1088/1674-1056/24/3/030504
GENERAL Prev   Next  

Robust sliding mode control for fractional-order chaotic economical system with parameter uncertainty and external disturbance

Zhou Ke (周柯)a, Wang Zhi-Hui (王智慧)b, Gao Li-Ke (高立克)a, Sun Yue (孙跃)b, Ma Tie-Dong (马铁东)b
a Electric Power Research Institute, Guangxi Power Grid Corporation, Nanning 530023, China;
b College of Automation, Chongqing University, Chongqing 400044, China
Abstract  This paper presents a modified sliding mode control for fractional-order chaotic economical systems with parameter uncertainty and external disturbance. By constructing the suitable sliding mode surface with fractional-order integral, the effective sliding mode controller is designed to realize the asymptotical stability of fractional-order chaotic economical systems. Comparing with the existing results, the main results in this paper are more practical and rigorous. Simulation results show the effectiveness and feasibility of the proposed sliding mode control method.
Keywords:  fractional-order chaotic systems      economical system      sliding mode control      parameter uncertainty  
Received:  24 April 2014      Revised:  23 June 2014      Accepted manuscript online: 
PACS:  05.45.Xt (Synchronization; coupled oscillators)  
  05.45.Jn (High-dimensional chaos)  
  05.45.Pq (Numerical simulations of chaotic systems)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51207173 and 51277192).
Corresponding Authors:  Wang Zhi-Hui     E-mail:  cquwzh@163.com

Cite this article: 

Zhou Ke (周柯), Wang Zhi-Hui (王智慧), Gao Li-Ke (高立克), Sun Yue (孙跃), Ma Tie-Dong (马铁东) Robust sliding mode control for fractional-order chaotic economical system with parameter uncertainty and external disturbance 2015 Chin. Phys. B 24 030504

[1] Podlubny I 1999 Fractional Differential Equations (New York: Academic)
[2] Hilfer R 2001 Applications of Fractional Calculus in Physics (Singapore: World Scientific)
[3] Hu K X and Zhu K Q 2009 Chin. Phys. Lett. 26 108301
[4] Ichise M, Nagayanagi Y and Kojima T 1971 J. Electroanal. Chem. Interfacial Electrochem. 33 253
[5] Ezzat M A 2011 Appl. Math. Modelling 35 4965
[6] Sun H, Abdelwahab A and Onaral B 1984 IEEE Trans. Autom. Control 29 441
[7] Chen W C 2008 Chaos Solitons Fract. 36 1305
[8] Chian A L, Rempel E L and Rogers C 2006 Chaos Soliton. Fract. 29 1194
[9] Cesare L D and Sportelli M 2005 Chaos Soliton. Fract. 25 233
[10] Ma J H and Chen Y S 2001 Appl. Math. Mech. 22 1240
[11] Ma J H and Chen Y S 2001 Appl. Math. Mech. 22 1375
[12] Wang Z, Huang X and Shi G D 2011 Comput. Math. Appl. 62 1531
[13] Abd-Elouahab M S, Hamri N E and Wang J W 2010 Math. Probl. Eng. 2010 270646
[14] Wang Z and Huang X 2011 Procedia Engineering 15 516
[15] Chen L P, Chai Y and Wu R C 2011 Discrete Dyn. Nat. Soc. 2011 958393
[16] Wang X Y and Zhang Y L 2011 Chin. Phys. B 20 100506
[17] Wang M J, Wang X Y and Niu Y J 2011 Chin. Phys. B 20 010508
[18] Fu J, Yu M and Ma T D 2011 Chin. Phys. B 20 120508
[19] Wang X Y, Zhao G B and Yang Y H 2013 Int. J. Mod. Phys. B 27 1350034
[20] Luo C and Wang X Y 2013 Nonlinear Dyn. 71 241
[21] Guan Z H, Huang F J and Guan W J 2005 Phys. Lett. A 346 153
[22] Li C G and Chen G R 2004 Chaos Soliton. Fract. 22 549
[23] Bhalekar S and Daftardar-Gejji V 2010 Commun. Nonlinear Sci. Numer. Simulat. 15 3536
[24] Taghvafard H and Erjaee G H 2011 Commun. Nonlinear Sci. Numer. Simulat. 16 4079
[25] Wang X Y, Zhang X P and Ma C 2012 Nonlinear Dyn. 69 511
[26] Yin C, Dadras S, Zhong S M and Chen Y Q 2013 Appl. Math. Model. 37 2469
[27] Sun N, Zhang H G and Wang Z L 2011 Acta Phys. Sin. 60 050511 (in Chinese)
[28] Liu D and Yan X M 2009 Acta Phys. Sin. 58 3747 (in Chinese)
[29] Liu F C, Li J Y and Zang X F 2011 Acta Phys. Sin. 60 030504 (in Chinese)
[30] Zhao L D, Hu J B and Liu X H 2010 Acta Phys. Sin. 59 2305 (in Chinese)
[31] Zhang R X and Yang S P 2010 Chin. Phys. B 19 020510
[32] Ma T D, Jiang W B, Fu J, Chai Y, Chen L P and Xue F Z 2012 Acta Phys. Sin. 61 160506 (in Chinese)
[33] Senejohnny D M and Delavari H 2012 Commun. Nonlinear Sci. Numer. Simulat. 17 4373
[34] Liu L, Liang D L, Liu C X and Zhang Q 2012 Int. J. Mod. Phys. B 26 1250166
[35] Wang X Y and Hu Z W 2012 Int. J. Mod. Phys. B 26 1250176
[36] Wang X Y, Zhang Y L, Li D and Zhang N 2011 Chin. Phys. B 20 030506
[37] Ma T D, Jiang W B and Fu J 2012 Acta Phys. Sin. 61 090503 (in Chinese)
[38] Ma T D, Jiang W B, Fu J and Xue F Z 2012 Acta Phys. Sin. 61 100507 (in Chinese)
[39] Dadras S and Momeni H R 2010 Physica A 389 2434
[40] Wang Z, Huang X and Shen H 2012 Neurocomputing 83 83
[41] Li Y, Chen Y Q and Podlubny I 2009 Automatica 45 1965
[1] Fixed time integral sliding mode controller and its application to the suppression of chaotic oscillation in power system
Jiang-Bin Wang(王江彬), Chong-Xin Liu(刘崇新), Yan Wang(王琰), Guang-Chao Zheng(郑广超). Chin. Phys. B, 2018, 27(7): 070503.
[2] A new four-dimensional chaotic system with first Lyapunov exponent of about 22, hyperbolic curve and circular paraboloid types of equilibria and its switching synchronization by an adaptive global integral sliding mode control
Jay Prakash Singh, Binoy Krishna Roy, Zhouchao Wei(魏周超). Chin. Phys. B, 2018, 27(4): 040503.
[3] Finite-time robust control of uncertain fractional-order Hopfield neural networks via sliding mode control
Yangui Xi(喜彦贵), Yongguang Yu(于永光), Shuo Zhang(张硕), Xudong Hai(海旭东). Chin. Phys. B, 2018, 27(1): 010202.
[4] Dynamic analysis and fractional-order adaptive sliding mode control for a novel fractional-order ferroresonance system
Ningning Yang(杨宁宁), Yuchao Han(韩宇超), Chaojun Wu(吴朝俊), Rong Jia(贾嵘), Chongxin Liu(刘崇新). Chin. Phys. B, 2017, 26(8): 080503.
[5] Robust pre-specified time synchronization of chaotic systems by employing time-varying switching surfaces in the sliding mode control scheme
Alireza Khanzadeh, Mahdi Pourgholi. Chin. Phys. B, 2016, 25(8): 080501.
[6] Controlling chaos based on a novel intelligent integral terminal sliding mode control in a rod-type plasma torch
Safa Khari, Zahra Rahmani, Behrooz Rezaie. Chin. Phys. B, 2016, 25(5): 050201.
[7] Full-order sliding mode control of uncertain chaos in a permanent magnet synchronous motor based on a fuzzy extended state observer
Chen Qiang (陈强), Nan Yu-Rong (南余荣), Zheng Heng-Huo (郑恒火), Ren Xue-Mei (任雪梅). Chin. Phys. B, 2015, 24(11): 110504.
[8] Generalized projective synchronization of the fractional-order chaotic system using adaptive fuzzy sliding mode control
Wang Li-Ming (王立明), Tang Yong-Guang (唐永光), Chai Yong-Quan (柴永泉), Wu Feng (吴峰). Chin. Phys. B, 2014, 23(10): 100501.
[9] Finite-time sliding mode synchronization of chaotic systems
Ni Jun-Kang (倪骏康), Liu Chong-Xin (刘崇新), Liu Kai (刘凯), Liu Ling (刘凌). Chin. Phys. B, 2014, 23(10): 100504.
[10] Synchronization of uncertain fractional-order chaotic systems with disturbance based on fractional terminal sliding mode controller
Wang Dong-Feng (王东风), Zhang Jin-Ying (张金营), Wang Xiao-Yan (王晓燕). Chin. Phys. B, 2013, 22(4): 040507.
[11] Chaos synchronization of a chain network based on a sliding mode control
Liu Shuang (柳爽), Chen Li-Qun (陈立群). Chin. Phys. B, 2013, 22(10): 100506.
[12] Adaptive projective synchronization of different chaotic systems with nonlinearity inputs
Niu Yu-Jun(牛玉军), Wang Xing-Yuan(王兴元), and Pei Bing-Nan(裴炳南) . Chin. Phys. B, 2012, 21(3): 030503.
[13] Spatiotemporal chaos synchronization of an uncertain network based on sliding mode control
Lü Ling (吕翎), Yu Miao (于淼), Wei Lin-Ling (韦琳玲) , Zhang Meng(张檬), Li Yu-Shan (李雨珊). Chin. Phys. B, 2012, 21(10): 100507.
[14] Comparison between two different sliding mode controllers for a fractional-order unified chaotic system
Qi Dong-Lian(齐冬莲), Wang Qiao(王乔), and Yang Jie(杨捷) . Chin. Phys. B, 2011, 20(10): 100505.
[15] Synchronization between fractional-order chaotic systems and integer orders chaotic systems (fractional-order chaotic systems)
Zhou Ping(周平), Cheng Yuan-Ming(程元明), and Kuang Fei(邝菲). Chin. Phys. B, 2010, 19(9): 090503.
No Suggested Reading articles found!