|
|
Robust sliding mode control for fractional-order chaotic economical system with parameter uncertainty and external disturbance |
Zhou Ke (周柯)a, Wang Zhi-Hui (王智慧)b, Gao Li-Ke (高立克)a, Sun Yue (孙跃)b, Ma Tie-Dong (马铁东)b |
a Electric Power Research Institute, Guangxi Power Grid Corporation, Nanning 530023, China; b College of Automation, Chongqing University, Chongqing 400044, China |
|
|
Abstract This paper presents a modified sliding mode control for fractional-order chaotic economical systems with parameter uncertainty and external disturbance. By constructing the suitable sliding mode surface with fractional-order integral, the effective sliding mode controller is designed to realize the asymptotical stability of fractional-order chaotic economical systems. Comparing with the existing results, the main results in this paper are more practical and rigorous. Simulation results show the effectiveness and feasibility of the proposed sliding mode control method.
|
Received: 24 April 2014
Revised: 23 June 2014
Accepted manuscript online:
|
PACS:
|
05.45.Xt
|
(Synchronization; coupled oscillators)
|
|
05.45.Jn
|
(High-dimensional chaos)
|
|
05.45.Pq
|
(Numerical simulations of chaotic systems)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51207173 and 51277192). |
Corresponding Authors:
Wang Zhi-Hui
E-mail: cquwzh@163.com
|
Cite this article:
Zhou Ke (周柯), Wang Zhi-Hui (王智慧), Gao Li-Ke (高立克), Sun Yue (孙跃), Ma Tie-Dong (马铁东) Robust sliding mode control for fractional-order chaotic economical system with parameter uncertainty and external disturbance 2015 Chin. Phys. B 24 030504
|
[1] |
Podlubny I 1999 Fractional Differential Equations (New York: Academic)
|
[2] |
Hilfer R 2001 Applications of Fractional Calculus in Physics (Singapore: World Scientific)
|
[3] |
Hu K X and Zhu K Q 2009 Chin. Phys. Lett. 26 108301
|
[4] |
Ichise M, Nagayanagi Y and Kojima T 1971 J. Electroanal. Chem. Interfacial Electrochem. 33 253
|
[5] |
Ezzat M A 2011 Appl. Math. Modelling 35 4965
|
[6] |
Sun H, Abdelwahab A and Onaral B 1984 IEEE Trans. Autom. Control 29 441
|
[7] |
Chen W C 2008 Chaos Solitons Fract. 36 1305
|
[8] |
Chian A L, Rempel E L and Rogers C 2006 Chaos Soliton. Fract. 29 1194
|
[9] |
Cesare L D and Sportelli M 2005 Chaos Soliton. Fract. 25 233
|
[10] |
Ma J H and Chen Y S 2001 Appl. Math. Mech. 22 1240
|
[11] |
Ma J H and Chen Y S 2001 Appl. Math. Mech. 22 1375
|
[12] |
Wang Z, Huang X and Shi G D 2011 Comput. Math. Appl. 62 1531
|
[13] |
Abd-Elouahab M S, Hamri N E and Wang J W 2010 Math. Probl. Eng. 2010 270646
|
[14] |
Wang Z and Huang X 2011 Procedia Engineering 15 516
|
[15] |
Chen L P, Chai Y and Wu R C 2011 Discrete Dyn. Nat. Soc. 2011 958393
|
[16] |
Wang X Y and Zhang Y L 2011 Chin. Phys. B 20 100506
|
[17] |
Wang M J, Wang X Y and Niu Y J 2011 Chin. Phys. B 20 010508
|
[18] |
Fu J, Yu M and Ma T D 2011 Chin. Phys. B 20 120508
|
[19] |
Wang X Y, Zhao G B and Yang Y H 2013 Int. J. Mod. Phys. B 27 1350034
|
[20] |
Luo C and Wang X Y 2013 Nonlinear Dyn. 71 241
|
[21] |
Guan Z H, Huang F J and Guan W J 2005 Phys. Lett. A 346 153
|
[22] |
Li C G and Chen G R 2004 Chaos Soliton. Fract. 22 549
|
[23] |
Bhalekar S and Daftardar-Gejji V 2010 Commun. Nonlinear Sci. Numer. Simulat. 15 3536
|
[24] |
Taghvafard H and Erjaee G H 2011 Commun. Nonlinear Sci. Numer. Simulat. 16 4079
|
[25] |
Wang X Y, Zhang X P and Ma C 2012 Nonlinear Dyn. 69 511
|
[26] |
Yin C, Dadras S, Zhong S M and Chen Y Q 2013 Appl. Math. Model. 37 2469
|
[27] |
Sun N, Zhang H G and Wang Z L 2011 Acta Phys. Sin. 60 050511 (in Chinese)
|
[28] |
Liu D and Yan X M 2009 Acta Phys. Sin. 58 3747 (in Chinese)
|
[29] |
Liu F C, Li J Y and Zang X F 2011 Acta Phys. Sin. 60 030504 (in Chinese)
|
[30] |
Zhao L D, Hu J B and Liu X H 2010 Acta Phys. Sin. 59 2305 (in Chinese)
|
[31] |
Zhang R X and Yang S P 2010 Chin. Phys. B 19 020510
|
[32] |
Ma T D, Jiang W B, Fu J, Chai Y, Chen L P and Xue F Z 2012 Acta Phys. Sin. 61 160506 (in Chinese)
|
[33] |
Senejohnny D M and Delavari H 2012 Commun. Nonlinear Sci. Numer. Simulat. 17 4373
|
[34] |
Liu L, Liang D L, Liu C X and Zhang Q 2012 Int. J. Mod. Phys. B 26 1250166
|
[35] |
Wang X Y and Hu Z W 2012 Int. J. Mod. Phys. B 26 1250176
|
[36] |
Wang X Y, Zhang Y L, Li D and Zhang N 2011 Chin. Phys. B 20 030506
|
[37] |
Ma T D, Jiang W B and Fu J 2012 Acta Phys. Sin. 61 090503 (in Chinese)
|
[38] |
Ma T D, Jiang W B, Fu J and Xue F Z 2012 Acta Phys. Sin. 61 100507 (in Chinese)
|
[39] |
Dadras S and Momeni H R 2010 Physica A 389 2434
|
[40] |
Wang Z, Huang X and Shen H 2012 Neurocomputing 83 83
|
[41] |
Li Y, Chen Y Q and Podlubny I 2009 Automatica 45 1965
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|