ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Optical properties of phosphate glasses co-doped with Yb3+ and silver nanoparticles |
M. A. Vallejo H.a, M. A. Martinez G.a, A. V. Kiryanova, J. L. Lucio M.b |
a Centro de Investigaciones en Óptica, Loma del Bosque 115, Col. Lomas del Campestre, León 37150, Guanajuato, México; b División de Ciencias e Ingenierías del Campus León de la Universidad de Guanajuato. Loma del Bosque 103,Col. Lomas del Campestre 37150, León Guanajuato, México |
|
|
Abstract We report the fabrication and spectroscopic characterization of Yb3+-doped phosphate glass, also containing silver nitrate. Scanning electron microscopy (SEM) provides the evidence of the formation of silver nano-particles (SNPs), which are formed as a consequence of melting and thermal decomposition of AgNO3. Absorption spectra of the samples in the visible-to-near-infrared spectral range reveal the presence of bands centered at 410 nm associated with the SNP-plasmon resonance, and at 976 nm due to the Yb3+. Under 916-nm laser-diode pumping, the effect of the SNP reflects that: i) the fluorescence in the 950-nm–1150-nm spectral range is strongly enhanced (~30 times), while the fluorescence decay time associated with the 2F5/2→F7/2 transition of Yb3+ increases 25%, and ii) the basic lasing properties (saturation pumping intensity, the emission and absorption cross sections) are substantially improved.
|
Received: 24 April 2014
Revised: 01 July 2014
Accepted manuscript online:
|
PACS:
|
42.70.-a
|
(Optical materials)
|
|
78.20.-e
|
(Optical properties of bulk materials and thin films)
|
|
81.05.Kf
|
(Glasses (including metallic glasses))
|
|
Fund: Lucio M J L was financially supported by the CONACyT (Grant No. CB-2009-136186-F). |
Corresponding Authors:
M. A. Martinez
E-mail: mamg@cio.mx
|
Cite this article:
M. A. Vallejo H., M. A. Martinez G., A. V. Kiryanov, J. L. Lucio M. Optical properties of phosphate glasses co-doped with Yb3+ and silver nanoparticles 2014 Chin. Phys. B 23 124214
|
|
| [1] | Zhang Q, Ding J, Tang B, Cheng J, Qiao Y, Zhou Q, Qiu J, Chen Q and Chen D 2009 J. Phys. D: Appl. Phys. 42 235405
|
|
| [2] | Kassab L R P, Tatumi S H, Morais A S, Courrol L C, Wetter N U and Salvador V L R 2001 Opt. Express 8 585
|
|
| [3] | Jiang C, Zhang J Z, Deng P Z, Huang G S, Mao H F and Gan F X 1999 Sci. China (Series E) 42 617
|
|
| [4] | Bell M J V, Quirinm W G, Oliveira S L, de Sousa D F and L Nunes A O 2003 J. Phys.: Condens. Matter 15 4877
|
|
| [5] | Villegas I L, Cuadrado C, Díez A, Cruz J L, Martínez M A and Andrés M V 2011 Laser Phys. Lett. 8 227
|
|
| [6] | Kuznetsov A G and Babin S A 2010 Laser Phys. 20 1266
|
|
| [7] | Jacinto C, Oliveira S L, Nunes L A O, Catunda T and Bell M J V 2006 J. Appl. Phys. 100 113103
|
|
| [8] | Liu H, Biswal S, Paye J, Nees J, Mourou G, Honninger C and Keller U 1999 Opt. Lett. 24 917
|
|
| [9] | Paoloni S, Hein J, Tôpfer T, Walther H G, Sauerbrey R, Ehrt D and Wintzer W 2004 Appl. Phys. B: Lasers Opt. 78 415
|
|
| [10] | Honninger C, Morier F, Moser M, Keller U, Brovelli L R and Harder C 1998 Opt. Lett. 23 126
|
|
| [11] | Ehrmann P R and Campbell J H 2002 J. Am. Ceram. Soc. 85 1061
|
|
| [12] | Ehrmann P R, Carlson K, Campbell J H, Click C A and Brow R K 2004 J. Non-Cryst. Solids 349 105
|
|
| [13] | Courrol L C, Kassab L R P, Morais A S, Mendes C M S, Gomes L, Werrer N U, Vieira N D Jr, Cssanjes F C, Messaddeq Y and Ribeiro S J L 2003 J. Lumin. 102-103 106
|
|
| [14] | Campbell J H and Suratwala T I 2000 J. Non-Cryst. Solids 263 318
|
|
| [15] | Ebendorff H, Seeber W and Ehrt D 1995 J. Non-Cryst. Solids 183 191
|
|
| [16] | Martínez M A, Kir'yanov A V, Lucio J L, Wiechers C and Kumar G A 2009 J. Alloys Compd. 473 500
|
|
| [17] | Francini R, Giovenale F, Grassano U M, Laporta P and Taccheo S 2000 Opt. Mater. 13 417
|
|
| [18] | Gapontsev V, Gapontsev D and Platonov N 2005 Proc. CLEOIEurope-2005 (Munich, Germany, 2005) CJl-1-THU
|
|
| [19] | Denker B I, Galagan B I, Kamynin V A, Kurkov A S, Sadovnikova Ya E, Semenov S L, Sverchkov S E, Velmiskin V V and Dianov E M 2013 Laser Phys. Lett. 10 1088
|
|
| [20] | Kühn S, Håkanson U, Rogobete L and Sandoghdar V 2006 Phys. Rev. Lett. 97 017402
|
|
| [21] | Karlson G, Laurell F and Tellefsen J 2002 Appl. Phys. B 75 41
|
|
| [22] | Bufetov I A, Semenov S L, Kosolapov A F, Mel'kumov M A, Dudin V V, Galagan B I, Denker B I, Osiko V V and Sverchkov S E, E M 2006 Quantum Electron. 36 189
|
|
| [23] | Kalkmanan J L and Polman A 2005 Appl. Phys. Lett. 86 041113
|
|
| [24] | Metricon Corporation,
|
|
| [25] | Dolgaleva K, Boyd R W and Milonni P W 2007 J. Opt. Soc. Am. B 24 516
|
|
| [26] | Cruz S G, Martínez M A, Kir'yanov A V and Kumar G A 2005 Opt. Mater. 27 1563
|
|
| [27] | France P W 1990 Optical Fiber Laser and Amplifiers (Blackie Glasgow and London) p. 28
|
|
| [28] | Ganeev R A and Ryasny A I 2006 Appl. Phys. B 84 295
|
|
| [29] | Zou X and Toratani H 1995 Phys. Rev. B 52 15889
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|