ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Theory study on a photonic-assisted radio frequency phase shifter with direct current voltage control |
Li Jing (李晶)a b, Ning Ti-Gang (宁提纲)a b, Pei Li (裴丽)a b, Jian Wei (简伟)a b, You Hai-Dong (油海东)a b c, Wen Xiao-Dong (温晓东)a b, Chen Hong-Yao (陈宏尧)a b, Zhang Chan (张婵)a b, Zheng Jing-Jing (郑晶晶)a b |
a Key Laboratory of All Optical Network & Advanced Telecommunication Network of EMC, Beijing Jiaotong University, Beijing 100044, China; b Institute of Lightwave Technology, Beijing Jiaotong University, Beijing 100044, China; c Science and Information College, Qingdao Agricultural University, Qingdao 266109, China |
|
|
Abstract A photonic-assisted radio frequency phase shifter with direct current voltage control is proposed using a polymer-based integrated Mach-Zehnder modulator. A closed-form expression of radio frequency (RF) signal power and phase is given. Theoretical calculation reveals that by carefully setting the bias voltages, RF signal power variation lower than 1-dB and phase accuracy less than 3° can be achieved and are not degraded by perturbation of modulation index once the bias voltage drift is kept within -3% ~ 3%.
|
Received: 11 December 2013
Revised: 04 April 2014
Accepted manuscript online:
|
PACS:
|
42.79.Sz
|
(Optical communication systems, multiplexers, and demultiplexers?)
|
|
84.40.-x
|
(Radiowave and microwave (including millimeter wave) technology)
|
|
42.79.Hp
|
(Optical processors, correlators, and modulators)
|
|
Fund: Project supported by the Fundamental Research Funds for the Central Universities of China (Grant No. 2014JBM013). |
Corresponding Authors:
Pei Li
E-mail: lipei@bjtu.edu.cn
|
About author: 42.79.Sz; 84.40.-x; 42.79.Hp |
Cite this article:
Li Jing (李晶), Ning Ti-Gang (宁提纲), Pei Li (裴丽), Jian Wei (简伟), You Hai-Dong (油海东), Wen Xiao-Dong (温晓东), Chen Hong-Yao (陈宏尧), Zhang Chan (张婵), Zheng Jing-Jing (郑晶晶) Theory study on a photonic-assisted radio frequency phase shifter with direct current voltage control 2014 Chin. Phys. B 23 104216
|
|
| [1] | Tan W C and Masuoka T 2005 Phys. Fluids 17 023101
|
|
| [1] | Xu E M, Zhang X L, Zhou L N, Zhang Y and Huang D X 2009 Chin. Phys. Lett. 26 94208
|
|
| [2] | Dong J J, Luo B W, Yu Y and Zhang X L 2012 Chin. Phys. B 21 068401
|
|
| [2] | Pakdemirli M 1992 Int. J. Non-Linear Mech. 27 785
|
|
| [3] | Li R G, Jiang S W, Gao L B and Li Y R 2013 Chin. Phys. Lett. 30 078503
|
|
| [4] | Huang J, Zhao Q, Yang H, Dong J R and Zhang H Y 2013 Chin. Phys. B 22 127307
|
|
| [3] | Yang D and Zhu K Q 2010 Comput. Math. Appl. 60 2231
|
|
| [5] | Lee S S, Udupa A H, Erlig H, Zhang H, Chang Y, Zhang C, Chang D H, Bhattacharya D, Tsap B, Steier W H, Dalton L R and Fetterman H R 1999 IEEE Microwave and Guided Wave Lett. 9 357
|
|
| [4] | Zierep J and Fetecau C 2007 Int. J. Eng. Sci. 45 155
|
|
| [6] | Han J, Seo B J, Kim S K, Zhang H and Fetterman H R 2003 J. Lightwave Technol. 21 3257
|
|
| [5] | Serdar B and Salih Dokuz 2006 Int. J. Eng. Sci. 44 49
|
|
| [7] | Coward J F, Chalfant C H and Chang P H 1993 J. Lightwave Technol. 11 2201
|
|
| [8] | Chan E H W and Minasian R A 2006 J. Lightwave Technol. 24 2676
|
|
| [6] | Hayat T, Zaib S, Asghar S and Hendi A A 2012 Appl. Math. Mech. 33 411
|
|
| [9] | Fisher M R and Chuang S L 2006 IEEE Photon. Technol. Lett. 18 1714
|
|
| [7] | Aksoy Y, Pakdemirli M and Khalique C M 2007 Int. J. Eng. Sci. 45 829
|
|
| [10] | Loayssa A and Lahoz F J 2006 IEEE Photon. Technol. Lett. 18 208
|
|
| [8] | Zhao C and Yang C 2011 J. Non-Newtonian Fluid Mech. 166 1076
|
|
| [11] | Han J, Erlig H, Chang D, Oh M C, Zhang H, Zhang C, Steier W and Fetterman H 2002 IEEE Photon. Technol. Lett. 14 531
|
|
| [9] | Ellahi R, Hayat T and Asghar S 2010 Nonlinear Anal.: Real World Appl. 11 139
|
|
| [12] | Chang Q J, Li Q, Zhang Y H, Qiu M, Ye T and Su Y K 2009 IEEE Photon. Technol. Lett. 21 60
|
|
| [10] | Hayat T, Awais M and Sajid M 2011 Int. J. Mod. Phys. B 25 2863
|
|
| [11] | Fung Y C 1984 Biodynamics Circulation (New York: Springer-Verlag)
|
|
| [13] | Xue W Q, Sales S, Capmany J and Mork J 2010 Opt. Express 18 6156
|
|
| [12] | Dash R K, Mehta K N and Jayaraman G 1996 Int. J. Eng. Sci. 34 1145
|
|
| [14] | Sancho J, Lloret J, Gasulla I, Sales S and Capmany J 2011 Opt. Express 19 17421
|
|
| [13] | Eldabe N T M and Salwa M G E 1995 J. Phys. Soc. Jpn. 64 41
|
|
| [15] | Jez D R, Cearns K J and Jessop P E 1997 Microwave Opt. Technol. Lett. 15 46
|
|
| [14] | Boyd J, Buick J M and Green S 2007 Phys. Fluids 19 93
|
|
| [16] | Rahman B M A, Haxha V, Haxha S and Grattan K T V 2006 J. Lightwave Technol. 24 3506
|
|
| [15] | Nadeem S, Haq Ul R, Sher Akbar N and Khan Z H 2013 Alexandria Eng. J. 52 577
|
|
| [17] | Song R, Song H C, Steier W H and Cox C H 2007 IEEE J. Quantum Electron. 43 633
|
|
| [16] | Gupta P S and Gupta A S 1977 Can. J. Chem. Eng. 55 744
|
|
| [18] | Chen D T, Harold R F, Chen A T, William H S, Larry R D, Wang W S and Shi Y Q 1997 Appl. Phys. Lett. 70 3335
|
|
| [17] | Magyari E and Keller B 1999 J. Phys. D: Appl. Phys. 32 577
|
|
| [19] | Blahut M and Optilski A 2001 Opt. Electron. Rev. 9 293
|
|
| [20] | Pei L, Liu G H, Ning T G, Gao S, Li J and Zhang Y J 2012 Acta Phys. Sin. 61 064203 (in Chinese)
|
|
| [21] | Li J, Ning T G, Pei L, Jian W, You H D, Chen H Y, Zhang C and Li C 2013 Acta Phys. Sin. 62 224210 (in Chinese)
|
|
| [18] | Elbashbeshy E M A 2001 Arc. Mech. 53 643
|
|
| [22] | Li W, Zhu N H, Wang L X and Wang H 2011 J. Lightwave Technol. 29 3616
|
|
| [23] | Byrnes A, Pant R, Li E B, Choi D Y, Poulton C G, Fan S H, Madden S, Luther-Davies B and Eggleton B J 2012 Opt. Express 20 18845
|
|
| [19] | Parhta M K, Murthy P V S N and Rajasekhar G P 2005 Heat Mass Transfer 41 360
|
|
| [20] | Khan S K 2006 Int. J. Appl. Mech. Eng. 11 321
|
|
| [24] | Zou X H, Li W Z, Pan W, Yan L S and Yao J P 2013 IEEE Trans. Microwave Theor. Techniq. 61 3470
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|