Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(10): 104216    DOI: 10.1088/1674-1056/23/10/104216
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Theory study on a photonic-assisted radio frequency phase shifter with direct current voltage control

Li Jing (李晶)a b, Ning Ti-Gang (宁提纲)a b, Pei Li (裴丽)a b, Jian Wei (简伟)a b, You Hai-Dong (油海东)a b c, Wen Xiao-Dong (温晓东)a b, Chen Hong-Yao (陈宏尧)a b, Zhang Chan (张婵)a b, Zheng Jing-Jing (郑晶晶)a b
a Key Laboratory of All Optical Network & Advanced Telecommunication Network of EMC, Beijing Jiaotong University, Beijing 100044, China;
b Institute of Lightwave Technology, Beijing Jiaotong University, Beijing 100044, China;
c Science and Information College, Qingdao Agricultural University, Qingdao 266109, China
Abstract  A photonic-assisted radio frequency phase shifter with direct current voltage control is proposed using a polymer-based integrated Mach-Zehnder modulator. A closed-form expression of radio frequency (RF) signal power and phase is given. Theoretical calculation reveals that by carefully setting the bias voltages, RF signal power variation lower than 1-dB and phase accuracy less than 3° can be achieved and are not degraded by perturbation of modulation index once the bias voltage drift is kept within -3% ~ 3%.
Keywords:  RF photonics      RF phase shifter      integrated Mach-Zehnder modulator  
Received:  11 December 2013      Revised:  04 April 2014      Accepted manuscript online: 
PACS:  42.79.Sz (Optical communication systems, multiplexers, and demultiplexers?)  
  84.40.-x (Radiowave and microwave (including millimeter wave) technology)  
  42.79.Hp (Optical processors, correlators, and modulators)  
Fund: Project supported by the Fundamental Research Funds for the Central Universities of China (Grant No. 2014JBM013).
Corresponding Authors:  Pei Li     E-mail:  lipei@bjtu.edu.cn
About author:  42.79.Sz; 84.40.-x; 42.79.Hp

Cite this article: 

Li Jing (李晶), Ning Ti-Gang (宁提纲), Pei Li (裴丽), Jian Wei (简伟), You Hai-Dong (油海东), Wen Xiao-Dong (温晓东), Chen Hong-Yao (陈宏尧), Zhang Chan (张婵), Zheng Jing-Jing (郑晶晶) Theory study on a photonic-assisted radio frequency phase shifter with direct current voltage control 2014 Chin. Phys. B 23 104216

[1]Tan W C and Masuoka T 2005 Phys. Fluids 17 023101
[1]Xu E M, Zhang X L, Zhou L N, Zhang Y and Huang D X 2009 Chin. Phys. Lett. 26 94208
[2]Dong J J, Luo B W, Yu Y and Zhang X L 2012 Chin. Phys. B 21 068401
[2]Pakdemirli M 1992 Int. J. Non-Linear Mech. 27 785
[3]Li R G, Jiang S W, Gao L B and Li Y R 2013 Chin. Phys. Lett. 30 078503
[4]Huang J, Zhao Q, Yang H, Dong J R and Zhang H Y 2013 Chin. Phys. B 22 127307
[3]Yang D and Zhu K Q 2010 Comput. Math. Appl. 60 2231
[5]Lee S S, Udupa A H, Erlig H, Zhang H, Chang Y, Zhang C, Chang D H, Bhattacharya D, Tsap B, Steier W H, Dalton L R and Fetterman H R 1999 IEEE Microwave and Guided Wave Lett. 9 357
[4]Zierep J and Fetecau C 2007 Int. J. Eng. Sci. 45 155
[6]Han J, Seo B J, Kim S K, Zhang H and Fetterman H R 2003 J. Lightwave Technol. 21 3257
[5]Serdar B and Salih Dokuz 2006 Int. J. Eng. Sci. 44 49
[7]Coward J F, Chalfant C H and Chang P H 1993 J. Lightwave Technol. 11 2201
[8]Chan E H W and Minasian R A 2006 J. Lightwave Technol. 24 2676
[6]Hayat T, Zaib S, Asghar S and Hendi A A 2012 Appl. Math. Mech. 33 411
[9]Fisher M R and Chuang S L 2006 IEEE Photon. Technol. Lett. 18 1714
[7]Aksoy Y, Pakdemirli M and Khalique C M 2007 Int. J. Eng. Sci. 45 829
[10]Loayssa A and Lahoz F J 2006 IEEE Photon. Technol. Lett. 18 208
[8]Zhao C and Yang C 2011 J. Non-Newtonian Fluid Mech. 166 1076
[11]Han J, Erlig H, Chang D, Oh M C, Zhang H, Zhang C, Steier W and Fetterman H 2002 IEEE Photon. Technol. Lett. 14 531
[9]Ellahi R, Hayat T and Asghar S 2010 Nonlinear Anal.: Real World Appl. 11 139
[12]Chang Q J, Li Q, Zhang Y H, Qiu M, Ye T and Su Y K 2009 IEEE Photon. Technol. Lett. 21 60
[10]Hayat T, Awais M and Sajid M 2011 Int. J. Mod. Phys. B 25 2863
[11]Fung Y C 1984 Biodynamics Circulation (New York: Springer-Verlag)
[13]Xue W Q, Sales S, Capmany J and Mork J 2010 Opt. Express 18 6156
[12]Dash R K, Mehta K N and Jayaraman G 1996 Int. J. Eng. Sci. 34 1145
[14]Sancho J, Lloret J, Gasulla I, Sales S and Capmany J 2011 Opt. Express 19 17421
[13]Eldabe N T M and Salwa M G E 1995 J. Phys. Soc. Jpn. 64 41
[15]Jez D R, Cearns K J and Jessop P E 1997 Microwave Opt. Technol. Lett. 15 46
[14]Boyd J, Buick J M and Green S 2007 Phys. Fluids 19 93
[16]Rahman B M A, Haxha V, Haxha S and Grattan K T V 2006 J. Lightwave Technol. 24 3506
[15]Nadeem S, Haq Ul R, Sher Akbar N and Khan Z H 2013 Alexandria Eng. J. 52 577
[17]Song R, Song H C, Steier W H and Cox C H 2007 IEEE J. Quantum Electron. 43 633
[16]Gupta P S and Gupta A S 1977 Can. J. Chem. Eng. 55 744
[18]Chen D T, Harold R F, Chen A T, William H S, Larry R D, Wang W S and Shi Y Q 1997 Appl. Phys. Lett. 70 3335
[17]Magyari E and Keller B 1999 J. Phys. D: Appl. Phys. 32 577
[19]Blahut M and Optilski A 2001 Opt. Electron. Rev. 9 293
[20]Pei L, Liu G H, Ning T G, Gao S, Li J and Zhang Y J 2012 Acta Phys. Sin. 61 064203 (in Chinese)
[21]Li J, Ning T G, Pei L, Jian W, You H D, Chen H Y, Zhang C and Li C 2013 Acta Phys. Sin. 62 224210 (in Chinese)
[18]Elbashbeshy E M A 2001 Arc. Mech. 53 643
[22]Li W, Zhu N H, Wang L X and Wang H 2011 J. Lightwave Technol. 29 3616
[23]Byrnes A, Pant R, Li E B, Choi D Y, Poulton C G, Fan S H, Madden S, Luther-Davies B and Eggleton B J 2012 Opt. Express 20 18845
[19]Parhta M K, Murthy P V S N and Rajasekhar G P 2005 Heat Mass Transfer 41 360
[20]Khan S K 2006 Int. J. Appl. Mech. Eng. 11 321
[24]Zou X H, Li W Z, Pan W, Yan L S and Yao J P 2013 IEEE Trans. Microwave Theor. Techniq. 61 3470
[1] Switchable down-, up- and dual-chirped microwave waveform generation with improved time-bandwidth product based on polarization modulation and phase encoding
Yuxiao Guo(郭玉箫), Muguang Wang(王目光), Hongqian Mu(牟宏谦), and Guofang Fan(范国芳). Chin. Phys. B, 2022, 31(7): 078403.
[2] High-performance and fabrication friendly polarization demultiplexer
Huan Guan(关欢), Yang Liu(刘阳), and Zhiyong Li (李智勇). Chin. Phys. B, 2022, 31(3): 034203.
[3] Mode splitting and multiple-wavelength managements of surface plasmon polaritons in coupled cavities
Ping-Bo Fu(符平波) and Yue-Gang Chen(陈跃刚). Chin. Phys. B, 2022, 31(1): 014216.
[4] A 32-channel 100 GHz wavelength division multiplexer by interleaving two silicon arrayed waveguide gratings
Changjian Xie(解长健), Xihua Zou (邹喜华), Fang Zou(邹放), Lianshan Yan(闫连山), Wei Pan(潘炜), and Yong Zhang(张永). Chin. Phys. B, 2021, 30(12): 120703.
[5] Microwave frequency transfer over a 112-km urban fiber link based on electronic phase compensation
Wen-Xiang Xue(薛文祥), Wen-Yu Zhao(赵文宇), Hong-Lei Quan(全洪雷), Cui-Chen Zhao(赵粹臣), Yan Xing(邢燕), Hai-Feng Jiang(姜海峰), Shou-Gang Zhang(张首刚). Chin. Phys. B, 2020, 29(6): 064209.
[6] Light slowing and all-optical time division multiplexing of hybrid four-wave mixing signal in nitrogen-vacancy center
Ruimin Wang(王瑞敏), Irfan Ahmed, Faizan Raza, Changbiao Li(李昌彪), Yanpeng Zhang(张彦鹏). Chin. Phys. B, 2020, 29(5): 054204.
[7] Cascaded optical frequency transfer over 500-km fiber link using regenerative amplifier
Xue Deng(邓雪), Dong-Dong Jiao(焦东东), Jie Liu(刘杰), Qi Zang(臧琦), Xiang Zhang(张翔), Dan Wang(王丹), Jing Gao(高静), Rui-Fang Dong(董瑞芳), Tao Liu(刘涛), Shou-Gang Zhang(张首刚). Chin. Phys. B, 2020, 29(5): 054205.
[8] High common mode rejection ratio InP 90° optical hybrid in ultra-broadband at 60 nm with deep-rigded waveguide based on ×4 MMI coupler
Zi-Qing Lu(陆子晴), Qin Han(韩勤), Han Ye(叶焓), Shuai Wang(王帅), Feng Xiao(肖峰), Fan Xiao(肖帆). Chin. Phys. B, 2020, 29(5): 054206.
[9] Acquisition performance analysis for intersatellite optical communications with vibration influence
Jing Ma(马晶), Gaoyuan Lu(陆高原), Siyuan Yu(于思源), Liying Tan(谭立英), Yulong Fu(付玉龙), Fajun Li(黎发军). Chin. Phys. B, 2020, 29(1): 014205.
[10] Unitary transformation of general nonoverlapping-image multimode interference couplers with any input and output ports
Ze-Zheng Li(李泽正), Wei-Hua Han(韩伟华), Zhi-Yong Li(李智勇). Chin. Phys. B, 2020, 29(1): 014206.
[11] Multi-functional optical fiber sensor system based ona dense wavelength division multiplexer
Yue-Xin Yin(尹悦鑫), Zhifa Wu(吴志发), Siwen Sun(孙思文), Liang Tian(田亮), Xibin Wang(王希斌), Yuanda Wu(吴远大), Daming Zhang(张大明). Chin. Phys. B, 2019, 28(7): 074202.
[12] Simultaneous polarization separation and switching for 100-Gbps DP-QPSK signals in backbone networks
Yu-Long Su(苏玉龙), Huan Feng(冯欢), Hui Hu(胡辉), Wei Wang(汪伟), Tao Duan(段弢), Yi-Shan Wang(王屹山), Jin-Hai Si(司金海), Xiao-Ping Xie(谢小平), He-Ning Yang(杨合宁), Xin-Ning Huang(黄新宁). Chin. Phys. B, 2019, 28(2): 024216.
[13] 16-channel dual-tuning wavelength division multiplexer/demultiplexer
Pei Yuan(袁配), Yue Wang(王玥), Yuan-Da Wu(吴远大), Jun-Ming An(安俊明), Xiong-Wei Hu(胡雄伟). Chin. Phys. B, 2018, 27(12): 124208.
[14] Compact and high-efficient wavelength demultiplexing coupler based on high-index dielectric nanoantennas
Jingfeng Tan(谭敬丰), Hua Pang(庞画), Fengkai Meng(孟凤凯), Jin Jiang(蒋进). Chin. Phys. B, 2018, 27(9): 094217.
[15] Micro-light-emitting-diode array with dual functions of visible light communication and illumination
Yong Huang(黄涌), Zhi-You Guo(郭志友), Hui-Qing Sun(孙慧卿), Hong-Yong Huang(黄鸿勇). Chin. Phys. B, 2017, 26(10): 108504.
No Suggested Reading articles found!