Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(10): 104302    DOI: 10.1088/1674-1056/23/10/104302
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Investigation on the relationship between overpressure and sub-harmonic response from encapsulated microbubbles

Wu Jun (吴军)a, Fan Ting-Bo (范庭波)b c, Xu Di (许迪)a, Zhang Dong (章东)c
a The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China;
b Jiangsu Provincial Institute for Medical Equipment Testing, Nanjing 210012, China;
c Institute of Acoustics, Key Laboratory of Modern Acoustics, Ministry of Education, Nanjing University, Nanjing 210093, China
Abstract  Sub-harmonic component generated from microbubbles is proven to be potentially used in noninvasive blood pressure measurement. Both theoretical and experimental studies are performed in the present work to investigate the dependence of the sub-harmonic generation on the overpressure with different excitation pressure amplitudes and pulse lengths. With 4-MHz ultrasound excitation at an applied acoustic pressure amplitude of 0.24 MPa, the measured sub-harmonic amplitude exhibits a decreasing change as overpressure increases; while non-monotonic change is observed for the applied acoustic pressures of 0.36 MPa and 0.48 MPa, and the peak position in the curve of the sub-harmonic response versus the overpressure shifts toward higher overpressure as the excitation pressure amplitude increases. Furthermore, the exciting pulse with long duration could lead to a better sensitivity of the sub-harmonic response to overpressure. The measured results are explained by the numerical simulations based on the Marmottant model. The numerical simulations qualitatively accord with the measured results. This work might provide a preliminary proof for the optimization of the noninvasive blood pressure measurement through using sub-harmonic generation from microbubbles.
Keywords:  microbubble      overpressure      sub-harmonic response      blood pressure measurement  
Received:  24 November 2013      Revised:  02 March 2014      Accepted manuscript online: 
PACS:  43.25.+y (Nonlinear acoustics)  
  43.80.+p (Bioacoustics)  
Fund: Project supported by the National Basic Research Program from Ministry of Science and Technology, China (Grant No. 2011CB707900), the National Natural Science Foundation of China (Grant Nos. 81271589, 81227004, 11174141, 11374155, 11612032, and 81301616), and the Natural Science Foundation of Jiangsu Province, China (Grant Nos. BE2011110 and BK20131017).
Corresponding Authors:  Xu Di,Zhang Dong     E-mail:  di_hsu@126.com;dzhang@nju.edu.cn
About author:  43.25.+y; 43.80.+p

Cite this article: 

Wu Jun (吴军), Fan Ting-Bo (范庭波), Xu Di (许迪), Zhang Dong (章东) Investigation on the relationship between overpressure and sub-harmonic response from encapsulated microbubbles 2014 Chin. Phys. B 23 104302

[1]Benisty J I 2002 Circulation 106 192
[1]Raje A, Liaw S, Chary K V R and Davis B H 1995 Appl. Catal. A: Gen. 123 229
[2]Zhang C B, Liu Z, Guo X S and Zhang D 2010 Chin. Phys. B 20 024301
[3]Huang B, Zhang Y L, Zhang D and Gong X F 2010 Chin. Phys. B 19 054302
[4]de Jong N, Corner R and Lance C T 1994 Ultrasonics 32 447
[5]Shi W T and Forsberg F 2000 Ultrasound Med. Biol. 26 93
[2]Choi J G 2002 J. Ind. Eng. Chem. 8 1
[6]Fairbank W M and Scully M O 1977 IEEE Trans. Biomed. Eng. 24 107
[3]Li S, Lee J S, Hyeon T and Suslick K S 1999 Appl. Catal. A: Gen. 184 1
[4]Choi J G, Brenner J R, Colling C W, Demczyk B G, Dunning J L and Thompson L T 1992 Catal. Today 15 201
[7]Bouakaz A, Frinking P J A, de Jong N and Bom N 1999 Ultrasound Med. Biol. 25 1407
[5]Trawczynski J 2000 Appl. Catal. A: Gen. 197 289
[8]Forsberg F, Liu J B, Shi W T, Furuse J, Shimizu M and Goldberg B B 2005 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52 581
[6]Chuang J, Tu S and Chen M 1999 Thin Solid Films 346 299
[7]Hones P, Martin N, Regula M and Levy F 2003 J. Phys. D: Appl. Phys. 36 1023
[9]Shi W T, Forsberg F, Raichlen J S, Needleman L and Goldberg B B 1999 Ultrasound Med. Biol. 25 275
[10]Leodore L M, Forsberg F and Shi W T 2007 IEEE International Ultrasonics Symposium Proceedings, P5B-6
[8]Solak N, Ustel F, Urgen M, Aydin S and Cakir A F 2003 Surf. Coat. Technol. 174 713
[11]Frinking P J A, Gaud E, Brochot J and Arditi M 2010 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57 1762
[9]Linker G, Smithey R and Meyer O 1984 J. Phys. F: Met. Phys. 14 L115
[10]Inumaru K, Nishikawa T, Nakamura K and Yamanaka S 2008 Chem. Mater. 20 4756
[12]Andersen K S and Jensen J A 2009 J. Acoust. Soc. Am. 126 3350
[11]Ensinger W and Kiuchi M 1996 Surf. Coat. Technol. 84 425
[13]Katiyar A, Sarkar K and Forsberg F 2011 J. Acoust. Soc. Am. 129 2325
[12]Gajbhiye N S and Ningthoujam R S 2004 Phys. Status Solidi C 12 3449
[13]Shen L and Wang N 2011 J. Nanomater. 2011 781935
[14]Marmottant P, van der Meer S, Emmer M and Versluis M 2005 J. Acoust. Soc. Am. 118 3499
[14]Shen L H, Cui Q L, Zhang J, Li X F, Zhou Q and Zou G T 2005 Chin. Phys. Lett. 22 3192
[15]Zheng H R, Barker A and Shandas R 2006 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53 639
[15]Bogaerts A, Neyts E, Gijbels R and Mullen J V 2002 Spektrochim. Acta 57B 609
[16]Tang M X, Loughran J, Stride E, Zhang D and Eckersley R J 2011 J. Acoust. Soc. Am. 129 EL76
[16]Alsaran A and Celik A 2001 Mater. Charact. 47 207
[17]de Jong N, Emmer M, Chin C T, Bouskaz A, Mastik F, Lohse D and Versluis M 2007 Ultrasound Med. Biol. 37 653
[17]Karakan M, Alsaran A and Celik A 2003 Mater. Charact. 49 241
[18]Yu J F, Zhang D and Gong X F 2005 Chin. Phys. Lett. 22 892
[18]Ikhlaq U, Ahmad R, Saleem S, Shah M S, Umm-i-Kalsoom, Khan N and Khalid N 2012 Eur. Phys. J. Appl. Phys. 59 20801
[19]Gong Y J, Zhang D and Gong X F 2005 Chin. Sci. Bull. 50 1975
[1] Effect of pressure evolution on the formation enhancement in dual interacting vortex rings
Jianing Dong(董佳宁), Yang Xiang(向阳), Hong Liu(刘洪), and Suyang Qin(秦苏洋). Chin. Phys. B, 2022, 31(8): 084701.
[2] Nonlinear oscillation characteristics of magnetic microbubbles under acoustic and magnetic fields
Lixia Zhao(赵丽霞), Huimin Shi(史慧敏), Isaac Bello, Jing Hu(胡静), Chenghui Wang(王成会), and Runyang Mo(莫润阳). Chin. Phys. B, 2022, 31(3): 034302.
[3] Dynamics of an ultrasound contrast agent microbubble near spherical boundary in ultrasound field
Ji-Wen Hu(胡继文), Lian-Mei Wang(王练妹), Sheng-You Qian(钱盛友), Wen-Yi Liu(刘文一), Ya-Tao Liu(刘亚涛), Wei-Rui Lei(雷卫瑞). Chin. Phys. B, 2019, 28(11): 114301.
[4] Interaction between encapsulated microbubbles: A finite element modelling study
Chen-Liang Cai(蔡晨亮), Jie Yu(于洁), Juan Tu(屠娟), Xia-Sheng Guo(郭霞生), Pin-Tong Huang(黄品同), Dong Zhang(章东). Chin. Phys. B, 2018, 27(8): 084302.
[5] Nonlinear response of ultrasound contrast agent microbubbles: From fundamentals to applications
Xu-Dong Teng(滕旭东), Xia-Sheng Guo(郭霞生), Juan Tu(屠娟), Dong Zhang(章东). Chin. Phys. B, 2016, 25(12): 124308.
[6] Microflow-induced shear stress on biomaterial wall by ultrasound-induced encapsulated microbubble oscillation
Hu Ji-Wen (胡继文), Qian Sheng-You (钱盛友), Sun Jia-Na (孙佳娜), Lü Yun-Bin (吕云宾), Hu Ping (胡苹). Chin. Phys. B, 2015, 24(9): 094301.
[7] Microstreaming velocity field and shear stress created by an oscillating encapsulated microbubble near a cell membrane
Wang Li (王莉), Tu Juan (屠娟), Guo Xia-Sheng (郭霞生), Xu Di (许迪), Zhang Dong (章东). Chin. Phys. B, 2014, 23(12): 124302.
[8] Magnetic microbubble:A biomedical platform co-constructed from magnetics and acoustics
Yang Fang (杨芳), Gu Zhu-Xiao (顾竹笑), Jin Xin (金熙), Wang Hao-Yao (王皓瑶), Gu Ning (顾宁). Chin. Phys. B, 2013, 22(10): 104301.
[9] Correlation between microbubble-induced acoustic cavitation and hemolysis in vitro
Zhang Chun-Bing(张春兵), Liu Zheng(刘政), Guo Xia-sheng(郭霞生), and Zhang Dong(章东). Chin. Phys. B, 2011, 20(2): 024301.
[10] Effect of secondary radiation force on aggregation between encapsulated microbubbles
Zhang Yan-Li(张艳丽), Zheng Hai-Rong(郑海荣), Tang Meng-Xing(汤孟兴), and Zhang Dong(章东) . Chin. Phys. B, 2011, 20(11): 114302.
[11] Difference-frequency ultrasound generation from microbubbles under dual-frequency excitation
Ma Qing-Yu(马青玉), Qiu Yuan-Yuan(邱媛媛), Huang Bei(黄蓓), Zhang Dong(章东), and Gong Xiu-Fen(龚秀芬). Chin. Phys. B, 2010, 19(9): 094302.
[12] Finite element modeling of acoustic scattering from an encapsulated microbubble near rigid boundary
Huang Bei(黄蓓), Zhang Yan-Li(张艳丽), Zhang Dong(章东), and Gong Xiu-Fen(龚秀芬). Chin. Phys. B, 2010, 19(5): 054302.
[13] Improvement of the axial trapping effect using azimuthally polarised trapping beam
Li Xue-Cong(李雪璁) and Sun Xiu-Dong(孙秀冬). Chin. Phys. B, 2010, 19(11): 119401.
No Suggested Reading articles found!