Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(8): 087801    DOI: 10.1088/1674-1056/23/8/087801
Special Issue: INVITED REVIEW — International Conference on Nanoscience & Technology, China 2013
INVITED REVIEW—International Conference on Nanoscience & Technology, China 2013 Prev   Next  

Three-dimensional noble-metal nanostructure:A new kind of substrate for sensitive, uniform, and reproducible surface-enhanced Raman scattering

Tian Cui-Feng (田翠锋)a b, You Hong-Jun (尤红军)a, Fang Ji-Xiang (方吉祥)a
a State Key Laboratory for Mechanical Behavior of Materials, School of Science, Xi'an Jiaotong University, Xi'an 710049, China;
b Department of Physics, Shanxi Datong University, Datong 037009, China
Abstract  Surface-enhanced Raman spectroscopy (SERS) is a powerful vibrational spectroscopy technique for highly sensitive structural detection of low concentration analyte. The SERS activities largely depend on the topography of the substrate. In this review, we summarize the recent progress in SERS substrate, especially focusing on the three-dimensional (3D) noble-metal substrate with hierarchical nanostructure. Firstly, we introduce the background and general mechanism of 3D hierarchical SERS nanostructures. Then, a systematic overview on the fabrication, growth mechanism, and SERS property of various noble-metal substrates with 3D hierarchical nanostructures is presented. Finally, the applications of 3D hierarchical nanostructures as SERS substrates in many fields are discussed.
Keywords:  surface-enhanced Raman spectroscopy      noble metal      hierarchical nanostructure      FDTD  
Received:  04 September 2013      Revised:  30 April 2014      Accepted manuscript online: 
PACS:  78.30.-j (Infrared and Raman spectra)  
  78.67.Pt (Multilayers; superlattices; photonic structures; metamaterials)  
  62.23.St (Complex nanostructures, including patterned or assembled structures)  
  47.11.Fg (Finite element methods)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11304188, 51171139, and 51201122) and the Specialized Research Fund for the Doctoral Program of Higher Education, China (Grant No. 20120201120049).
Corresponding Authors:  You Hong-Jun, Fang Ji-Xiang     E-mail:  hjyou@mail.xjtu.edu.cn;jxfang@mail.xjtu.edu.cn

Cite this article: 

Tian Cui-Feng (田翠锋), You Hong-Jun (尤红军), Fang Ji-Xiang (方吉祥) Three-dimensional noble-metal nanostructure:A new kind of substrate for sensitive, uniform, and reproducible surface-enhanced Raman scattering 2014 Chin. Phys. B 23 087801

[1] Drescher D and Kneipp J 2012 Chem. Soc. Rev. 41 5780
[2] Gajaraj S, Fan C, Lin M S and Hu Z Q 2013 Environ. Monit. Assess. 185 5673
[3] Li Y T, Qu L L, Li D W, Song Q X, Fathi F and Long Y T 2013 Biosens. Bioelectron. 43 94
[4] Li J F, Huang Y F, Ding Y, Yang Z L, Li S B, Zhou X S, Fan F R, Zhang W, Zhou Z Y, Wu D Y, Ren B, Wang Z L and Tian Z Q 2010 Nature 464 392
[5] Nie S M and Emery S R 1997 Science 275 1102
[6] Jeanmaire D L and Vanduyne R P 1977 J. Electroanal. Chem. 84 1
[7] Sun M T, Liu S S, Chen M D and Xu H X 2009 J. Raman Spectrosc. 40 137
[8] Tian Z Q, Ren B and Wu D Y 2002 J. Phys. Chem. B 106 9463
[9] Xia Y N, Xiong Y J, Lim B and Skrabalak S E 2009 Angew. Chem. Int. Ed. 48 60
[10] Xu H X, Aizpurua J, Kall M and Apell P 2000 Phys. Rev. E 62 4318
[11] Dawson P, Duenas J A, Boyle M G, Doherty M D, Bell S E J, Kern A M, Martin O J F, Teh A S, Teo K B K and Milne W I 2011 Nano Lett. 11 365
[12] Mulvihill M J, Ling X Y, Henzie J and Yang P D 2010 J. Am. Chem. Soc. 132 268
[13] Rycenga M, Xia X H, Moran C H, Zhou F, Qin D, Li Z Y and Xia Y A 2011 Angew. Chem. Int. Ed. 50 5473
[14] Hao F, Nehl C L, Hafner J H and Nordlander P 2007 Nano Lett. 7 729
[15] Liang H Y, Li Z P, Wang W Z, Wu Y S and Xu H X 2009 Adv. Mater. 21 4614
[16] Lim D K, Jeon K S, Hwang J H, Kim H, Kwon S, Suh Y D and Nam J M 2011 Nat. Nano 6 452
[17] Liu Z, Zhang F, Yang Z, You H, Tian C, Li Z and Fang J 2013 J. Mater. Chem. C 1 5567
[18] Cheng L, Ma C S, Yang G, You H J and Fang J X 2014 J. Mater. Chem. A 2 4534
[19] Yang Z, Zhang L, You H, Li Z and Fang J 2014 Part. Part. Syst. Charact. 31 390
[20] Wu W, Jung G Y, Olynick D L, Straznicky J, Li Z, Li X, Ohlberg D A A, Chen Y, Wang S Y, Liddle J A, Tong W M and Williams R S 2005 Appl. Phys. A: Mater. Sci. Process. 80 1173
[21] Bellessa J, Symonds C, Vynck K, Lemaitre A, Brioude A, Beaur L, Plenet J C, Viste P, Felbacq D, Cambril E and Valvin P 2009 Phys. Rev. B 80 033303
[22] Sakamoto S, Philippe L, Bechelany M, Michler J, Asoh H and Ono S 2008 Nanotechnology 19 405304
[23] Cao C, Zhang J, Wen X, Dodson S L, Dao N T, Wong L M, Wang S, Li S, Phan A T and Xiong Q 2013 ACS Nano 7 7583
[24] Haynes C L, McFarland A D and Van Duyne R P 2005 Anal. Chem. 77 338A
[25] Gong X, Bao Y, Qiu C and Jiang C Y 2012 Chem. Commun. 48 7003
[26] Le F, Brandl D W, Urzhumov Y A, Wang H, Kundu J, Halas N J, Aizpurua J and Nordlander P 2008 ACS Nano 2 707
[27] Graham D, Thompson D G, Smith W E and Faulds K 2008 Nat. Nanotechnol. 3 548
[28] Fang Y, Seong N H and Dlott D D 2008 Science 321 388
[29] Xie W, Walkenfort B and Schlucker S 2013 J. Am. Chem. Soc. 135 1657
[30] Krug J T, Wang G D, Emory S R and Nie S 1999 J. Am. Chem. Soc. 121 9208
[31] Fang J X, Du S Y, Lebedkin S, Li Z Y, Kruk R, Kappes M and Hahn H 2010 Nano Lett. 10 5006
[32] Liu Z, Yang Z, Peng B, Cao C, Zhang C, You H, Xiong Q, Li Z and Fang J 2014 Adv. Mater. 26 2431
[33] Peng B, Li G, Li D, Dodson S, Zhang Q, Zhang J, Lee Y H, Demir H V, Yi L X and Xiong Q 2013 ACS Nano 7 5993
[34] Qu L L, Li D W, Xue J Q, Zhai W L, Fossey J S and Long Y T 2012 Lab Chip 12 876
[35] Qian X M, Peng X H, Ansari D O, Yin-Goen Q, Chen G Z, Shin D M, Yang L, Young A N, Wang M D and Nie S M 2008 Nat. Biotechnol. 26 83
[36] Rodríuez-Lorenzo L, Álvarez-Puebla R N A, Pastoriza-Santos I, Mazzucco S, Stéphan O, Kociak M, Liz-Marzán L M and García de Abajo F J 2009 J. Am. Chem. Soc. 131 4616
[37] Nalbant Esenturk E and Hight Walker A R 2009 J. Raman Spectrosc. 40 86
[38] Zuloaga J, Prodan E and Nordlander P 2009 Nano Lett. 9 887
[39] Mie G 1908 Ann. Phys. 25 377
[40] Yang W H, Schatz G C and Van Duyne R P 1995 J. Chem. Phys. 103 869
[41] Bian R X, Dunn R C, Xie X S and Leung P T 1995 Phys. Rev. Lett. 75 4722
[42] Tian C F, Ding C H, Liu S Y, Yang S C, Song X P, Ding B J, Li Z Y and Fang J X 2011 ACS Nano 5 9442
[43] Oh Y J and Jeong K H 2012 Adv. Mater. 24 2234
[44] Pradhan M, Chowdhury J, Sarkar S, Sinha A K and Pal T 2012 J. Phys. Chem. C 116 24301
[45] Wang Y, Becker M, Wang L, Liu J, Scholz R, Peng J, Gösele U, Christiansen S, Kim D H and Steinhart M 2009 Nano Lett. 9 2384
[46] Wu H Y and Cunningham B T 2011 Appl. Phys. Lett. 98 153103
[47] Cirací C, Hill R T, Mock J J, Urzhumov Y, Fernández-Domínguez A I, Maier S A, Pendry J B, Chilkoti A and Smith D R 2012 Science 337 1072
[48] Esteban R, Borisov A G, Nordlander P and Aizpurua J 2012 Nature Commun. 3 825.
[49] Savage K J, Hawkeye M M, Esteban R, Borisov A G, Aizpurua J and Baumberg J J 2012 Nat. Biotechnol. 491 574
[50] Ding C H, Tian C F, Krupke R and Fang J X 2012 CrystEngComm 14 875
[51] Fang J X, Yi Y, Ding B J, Song X P and 2008 Appl. Phys. Lett. 92 131115
[52] Fang J X, Liu S Y and Li Z Y 2011 Biomaterials 32 4877
[53] Gopinath A, Boriskina S V, Premasiri W R, Ziegler L, Reinhard B M and Negro L D 2009 Nano Lett. 9 3922
[54] Tian C F, Liu Z, Jin J H, Lebedkin S, Huang C, You H J, Liu R, Wang L Q, Song X P, Ding B J, Barczewski M, Schimmel T and Fang J X 2012 Nanotechnology 23 165604
[55] Zhang Q, Li W, Moran C, Chen J, Wen L P and Xia Y 2010 J. Am. Chem. Soc. 132 11372
[56] Jana N R, Gearheart L and Murphy C J 2001 Adv. Mater. 13 1389
[57] Pietrobon B, McEachran M and Kitaev V 2008 ACS Nano 3 21
[58] Rodríguez-Lorenzo L, Rica R D L, Álvarez-Puebla R A, Liz-Marzán L M and Stevens M M 2012 Nat. Mater. 11 604
[59] Sau T K, Rogach A L, Döblinger M and Feldmann J 2011 Small 7 2188
[60] Wang Z D, Zhang J Q, Ekman J, Kenis P J and Lu Y 2010 Nano Lett. 10 1886
[61] Peng Z M, You H J and Yang H 2010 ACS Nano 4 1501
[62] You H J, Yang S H, Ding B J and Yang H 2013 Chem. Soc. Rev. 42 2880
[63] LaMer V K and Dinegar R H 1950 J. Am. Chem. Soc. 72 4847
[64] He R, Chen S L, Yang F and Wu B L 2006 J. Phys. Chem. B 110 3262
[65] You H J, Fang J X, Chen F, Shi M, Song X P and Ding B J 2008 J. Phys. Chem. C 112 16301
[66] You H J, Ding C H, Song X P, Ding B J and Fang J X 2011 CrystEngComm 13 4491
[67] You H J, Fang J X, Chen F, Zhu C, Song X P and Ding B J 2008 Chem. Phys. Lett. 465 131
[68] Miyashita S, Saito Y and Uwaha M J 2005 Cryst. Growth 283 533
[69] Witten T A and Sander L M 1981 Phys. Rev. Lett. 47 1400
[70] Fang J X, Lebedkin S, Yang S C and Hahn H 2011 Chem. Commun. 47 5157
[71] Wang J J, Duan G T, Li Y, Liu G Q, Dai Z F, Zhang H W and Cai W P 2013 Langmuir 29 3512
[72] Zhang L, Gong X, Bao Y, Zhao Y, Xi M, Jiang C and Fong H 2012 Langmuir 28 14433
[73] He H, Cai W, Lin Y and Dai Z 2011 Langmuir 27 1551
[74] Lee C H, Tian L, Abbas A, Kattumenu R and Singamaneni S 2011 Nanotechnology 22 275311
[75] Carlberg B, Ye L L and Liu J H 2011 Small 7 3057
[76] Hankett J M, Zhang C and Chen Z 2012 Langmuir 28 4654
[77] You H J, Ji Y T, Wang L, Yang S C, Yang Z M, Fang J X, Song X P and Ding B J 2012 J. Mater. Chem. 22 1998
[78] Guven B, Akgul N B, Temur E, Tamerb U and H B I 2011 Analyst 136 740
[79] Jones C L, Bantz K C and Haynes C L 2009 Anal. Bioanal. Chem. 394 303
[80] Zhu C H, Meng G W, Huang Q, Li Z B, Huang Z L, Wang M L and Yuan J P 2012 J. Mater. Chem. 22 2271
[81] An Q, Zhang P, Li J M, Ma W F, J G, Hu J and Wang C C 2012 Nanoscale 4 5210
[82] Chen K, Han H Y and Luo Z H 2012 Analyst 137 1259
[83] Mohs A M, Mancini M C, Singhal S, Provenzale J M, Leyland-Jones B, Wang M D and Nie S 2010 Anal. Chem. 82 9058
[84] Stuart D A, Yuen J M, Shah N, yandres O L, Yonzon C R, Glucksberg M R, Walsh J T and Van Duyne R P 2006 Anal. Chem. 78 7211
[85] Shanmukh S, Jones L, Driskell J, Zhao Y P, Dluhy R and Tripp R A 2006 Nano Lett. 6 2630
[86] Li M, Cushing S K, Zhang J M, Suri S, Evans R, Petros W P, Gibson L F, Ma D L, Liu Y X and Wu N Q 2013 ACS Nano 7 4967
[87] Shafer-Peltier K E, Haynes C L, Glucksberg M R and Van Duyne R P 2003 J. Am. Chem. Soc. 125 588
[88] Greeneltch N G, Blaber M G, Henry A I, Schatz G C and Van Duyne R P 2013 Anal. Chem. 85 2297
[89] Chowdhury B, Bravo-Suarez J J, Minura N, Lu J Q, Bando K K, Tsubota S and Haruta M 2006 J. Phys. Chem. B 110 22995
[90] Shinizu K, Miyamoto Y, Kawasaki T, Tanji T, Tai Y and Satsuma A 2009 J. Phys. Chem. C 113 17803
[91] de Smit E, Swart I, Creemer J F, Hoveling G H, Gilles M K, Tyliszczak T, Kooyman P J, Zandbergen H W, Morin C, Weckhuysen B M and de Groot F M F 2008 Nature 456 222
[92] Lu H P, Xun L Y and Xie X S 1998 Science 282 1877
[93] Kang L L, Xu P, Zhang B, Tsai H H, Han X J and Wang H L 2013 Chem. Commun. 49 3389
[94] You H J, Peng Z M, Wu J B and Yang H 2011 Chem. Commun. 47 12595
[95] Xu P, Kang L L, Mack N H, Schanze K S, Han X J and Wang H L 2013 Sci. Rep. 3 2997
[96] Weckhuysen B M 2009 Angew. Chem. Int. Ed. 48 4910
[97] Sum M T, Zhang Z L, Zheng H R and Xu H X 2012 Sci. Rep. 2 647
[98] Van Schrojenstein Lantman E M, Deckert-Gaudig T, Mank A J, Deckert V and Weckhuysen B M 2012 Nat. Nanotechnol. 7 583
[1] Effect of surface plasmon coupling with radiating dipole on the polarization characteristics of AlGaN-based light-emitting diodes
Yi Li(李毅), Mei Ge(葛梅), Meiyu Wang(王美玉), Youhua Zhu(朱友华), and Xinglong Guo(郭兴龙). Chin. Phys. B, 2022, 31(7): 077801.
[2] Self-assembly 2D plasmonic nanorice film for surface-enhanced Raman spectroscopy
Tingting Liu(柳婷婷), Chuanyu Liu(刘船宇), Jialing Shi(石嘉玲), Lingjun Zhang(张玲君), Xiaonan Sun(孙晓楠), and Yingzhou Huang(黄映洲). Chin. Phys. B, 2021, 30(11): 117301.
[3] Coupling analysis of transmission lines excited by space electromagnetic fields based on time domain hybrid method using parallel technique
Zhi-Hong Ye(叶志红), Xiao-Lin Wu(吴小林), Yao-Yao Li(李尧尧). Chin. Phys. B, 2020, 29(9): 090701.
[4] Photocurrent improvement of an ultra-thin silicon solar cell using the localized surface plasmonic effect of clustering nanoparticles
F Sobhani, H Heidarzadeh, H Bahador. Chin. Phys. B, 2020, 29(6): 068401.
[5] Oxide-aperture-dependent output characteristics of circularly symmetric VCSEL structure
Wen-Yuan Liao(廖文渊), Jian Li(李健), Chuan-Chuan Li(李川川), Xiao-Feng Guo(郭小峰), Wen-Tao Guo(郭文涛), Wei-Hua Liu(刘维华), Yang-Jie Zhang(张杨杰), Xin Wei(韦欣), Man-Qing Tan(谭满清). Chin. Phys. B, 2020, 29(2): 024201.
[6] New hybrid FDTD algorithm for electromagnetic problem analysis
Xin-Bo He(何欣波), Bing Wei(魏兵), Kai-Hang Fan(范凯航), Yi-Wen Li(李益文), Xiao-Long Wei(魏小龙). Chin. Phys. B, 2019, 28(7): 074102.
[7] Transmission properties of microwave in rectangular waveguide through argon plasma
Xiaoyu Han(韩晓宇), Dawei Li(李大伟), Meie Chen(陈美娥), Zhan Zhang(张展), Zheng Li(李铮), Yujian Li(李雨键), Junhong Wang(王均宏). Chin. Phys. B, 2019, 28(3): 035204.
[8] Light trapping and optical absorption enhancement in vertical semiconductor Si/SiO2 nanowire arrays
Ying Wang(王莹), Xin-Hua Li(李新化). Chin. Phys. B, 2018, 27(2): 026102.
[9] FDTD simulation study of size/gap and substrate-dependent SERS activity study of Au@SiO2 nanoparticles
Jing-Liang Yang(杨晶亮), Ruo-Ping Li(李若平), Jun-He Han(韩俊鹤), Ming-Ju Huang(黄明举). Chin. Phys. B, 2016, 25(8): 083301.
[10] Absorption enhancement and sensing properties of Ag diamond nanoantenna arrays
Yuan Yu-Yang (袁宇阳), Yuan Zong-Heng (袁纵横), Li Xiao-Nan (李骁男), Wu Jun (吴军), Zhang Wen-Tao (张文涛), Ye Song (叶松). Chin. Phys. B, 2015, 24(7): 074206.
[11] An efficient locally one-dimensional finite-difference time-domain method based on the conformal scheme
Wei Xiao-Kun (魏晓琨), Shao Wei (邵维), Shi Sheng-Bing (石胜兵), Zhang Yong (张勇), Wang Bing-Zhong (王秉中). Chin. Phys. B, 2015, 24(7): 070203.
[12] Large-scale SiO2 photonic crystal for high efficiency GaN LEDs by nanospherical-lens lithography
Wu Kui (吴奎), Wei Tong-Bo (魏同波), Lan Ding (蓝鼎), Zheng Hai-Yang (郑海洋), Wang Jun-Xi (王军喜), Luo Yi (罗毅), Li Jin-Min (李晋闽). Chin. Phys. B, 2014, 23(2): 028504.
[13] A compact frequency selective stop-band splitter by using Fabry–Perot nanocavity in a T-shape waveguide
M Afshari Bavil, Sun Xiu-Dong (孙秀冬). Chin. Phys. B, 2013, 22(4): 047808.
[14] Analysis of tensile strain enhancement in Ge nano-belts on an insulator surrounded by dielectrics
Lu Wei-Fang (卢卫芳), Li Cheng (李成), Huang Shi-Hao (黄诗浩), Lin Guang-Yang (林光杨), Wang Chen (王尘), Yan Guang-Ming (严光明), Huang Wei (黄巍), Lai Hong-Kai (赖虹凯), Chen Song-Yan (陈松岩). Chin. Phys. B, 2013, 22(10): 107703.
[15] Improving lithographic masks with the assistance of indentations
Guo Ying-Nan(郭英楠), Li Xu-Feng(李旭峰), Pan Shi(潘石), Wang Qiao(王乔), Wang Shuo(王硕), and Wu Yong-Kuan(吴永宽) . Chin. Phys. B, 2012, 21(5): 057301.
No Suggested Reading articles found!