Special Issue:
TOPICAL REVIEW — Statistical Physics and Complex Systems
|
TOPICAL REVIEW—Statistical Physics and Complex Systems |
Prev
Next
|
|
|
Statistical physics of hard combinatorial optimization:Vertex cover problem |
Zhao Jin-Hua (赵金华), Zhou Hai-Jun (周海军) |
State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China |
|
|
Abstract Typical-case computation complexity is a research topic at the boundary of computer science, applied mathematics, and statistical physics. In the last twenty years, the replica-symmetry-breaking mean field theory of spin glasses and the associated message-passing algorithms have greatly deepened our understanding of typical-case computation complexity. In this paper, we use the vertex cover problem, a basic nondeterministic-polynomial (NP)-complete combinatorial optimization problem of wide application, as an example to introduce the statistical physical methods and algorithms. We do not go into the technical details but emphasize mainly the intuitive physical meanings of the message-passing equations. A nonfamiliar reader shall be able to understand to a large extent the physics behind the mean field approaches and to adjust the mean field methods in solving other optimization problems.
|
Received: 20 March 2014
Revised: 22 May 2014
Accepted manuscript online:
|
PACS:
|
89.20.Ff
|
(Computer science and technology)
|
|
75.10.Nr
|
(Spin-glass and other random models)
|
|
02.10.Ox
|
(Combinatorics; graph theory)
|
|
05.10.&ndash
|
|
|
a
|
|
|
Fund: Project supported by the National Basic Research Program of China (Grant No. 2013CB932804), the Knowledge Innovation Program of Chinese Academy of Sciences (Grant No. KJCX2-EW-J02), and the National Natural Science Foundation of China (Grant Nos. 11121403 and 11225526). |
Corresponding Authors:
Zhou Hai-Jun
E-mail: zhouhj@itp.ac.cn
|
About author: 89.20.Ff; 75.10.Nr; 02.10.Ox; 05.10.–a |
Cite this article:
Zhao Jin-Hua (赵金华), Zhou Hai-Jun (周海军) Statistical physics of hard combinatorial optimization:Vertex cover problem 2014 Chin. Phys. B 23 078901
|
[1] |
Cook S A 1971 Proceedings of the 3rd Annual ACM Symposium on Theory of Computing edited by Lewis P M, Fischer M J, Hopcroft J E, Rosenberg A L, Thatcher J W and Young P R (New York) p. 151
|
[2] |
Karp R M 1972 Complexity of Computer Computations (New York: Plenum Press) p. 85
|
[3] |
Garey Mand Johnson D S 1979 Computers and Intractability: A Guide to the Theory of NP-Completeness (San Francisco: Freeman)
|
[4] |
Papadimitriou C and Steiglitz K 1998 Combinatorial Optimization: Algorithms and Complexity (New York: Dover)
|
[5] |
Cheeseman P, Kanefsky B and Taylor W 1991 Proceedings 12th Int. Joint Conf. on Artificial Intelligence (Sydney) p. 163
|
[6] |
Mézard M, Parisi G and Virasoro M A 1987 Spin Glass Theory and Beyond (Singapore: World Scientific)
|
[7] |
Nishimori H 2001 Statistical Physics of Spin Glasses and Information Processing (Oxford: Oxford University Press)
|
[8] |
Mézard M and Montanari A 2009 Information, Physics, and Computation (New York: Oxford Unversity Press)
|
[9] |
Talagrand M 2003 Spin Glasses (Berlin: Springer)
|
[10] |
Hartmann A K and Weigt M 2005 Phase Transitions in Combinatorial Optimization Problems (Weinhei: Wiley-VCH)
|
[11] |
Mézard M and Parisi G 2001 Eur. Phys. J. B 20 217
|
[12] |
Mézard M and Parisi G 2003 J. Stat. Phys. 111 1
|
[13] |
Mézard M and Parisi G 1986 J. Physique 47 1285
|
[14] |
Monasson R and Zecchina R 1997 Phys. Rev. E 56 1357
|
[15] |
Mézard M, Parisi G and Zecchina R 2002 Science 297 812
|
[16] |
Mézard M and Zecchina R 2002 Phys. Rev. E 66 056126
|
[17] |
Montanari A, Ricci-Tersenghi F and Semerjian G 2008 J. Stat. Mech.: Theor. Exp. P04004
|
[18] |
Krzakala F, Montanari A, Ricci-Tersenghi F, Semerjian G and Zdeborová L 2007 Proc. Natl. Acad. Sci. USA 104 10318
|
[19] |
Franz S, Leone M, Ricci-Tersenghi F and Zecchina R 2001 Phys. Rev. Lett. 87 127209
|
[20] |
Cocco S, Dubois O, Mandler J and Monasson R 2003 Phys. Rev. Lett. 90 047205
|
[21] |
Mézard M, Ricci-Tersenghi F and Zecchina R 2003 J. Stat. Phys. 111 505
|
[22] |
Weigt M and Hartmann A K 2000 Phys. Rev. Lett. 84 6118
|
[23] |
Weigt M and Hartmann A K 2001 Phys. Rev. Lett. 86 1658
|
[24] |
Weigt M and Hartmann A K 2001 Phys. Rev. E 63 056127
|
[25] |
Hartmann A K and Weigt M 2003 J. Phys. A: Math. Gen. 36 11069
|
[26] |
Zhou H J 2003 Eur. Phys. J. B 32 265
|
[27] |
Weigt M and Zhou H J 2006 Phys. Rev. E 74 046110
|
[28] |
Zhou J and Zhou H J 2009 Phys. Rev. E 79 020103
|
[29] |
Zhang P, Zeng Y and Zhou H J 2009 Phys. Rev. E 80 021122
|
[30] |
Dall’Asta L, Pin P and Ramezanpour A 2009 Phys. Rev. E 80 061136
|
[31] |
Mézard M and Tarzia M 2007 Phys. Rev. E 76 041124
|
[32] |
Mézard M, Tarzia M and Toninelli C 2008 J. Phys. C: Conf. Ser. 95 012019
|
[33] |
van Mourik J and Saad D 2002 Phys. Rev. E 66 056120
|
[34] |
Mulet R, Pagnani A, Weigt M and Zecchina R 2002 Phys. Rev. Lett. 89 268701
|
[35] |
Zdeborová L and Krzakala F 2007 Phys. Rev. E 76 031131
|
[36] |
Karp R M and Sipser M 1981 Proceedings of the 22nd Annual IEEE Symposium on Foundations of Computer Science (NJ: Wiley-IEEE Computer Society Press) p. 364
|
[37] |
Zhou H J and Ou-Yang Z C 2003 arXiv:0309348v1 [cond-mat]
|
[38] |
Zdeborová L and Mézard M 2006 J. Stat. Mech.: Theor. Exp. P05003
|
[39] |
Zhou H J 2013 Eur. Phys. J. B 86 455
|
[40] |
Breitbart Y, Chan C, Garofalakis M, Rastogi R and Silberschatz A 2001 Proceedings of IEEE INFOCOM' 2001 (Anchorage) p. 933
|
[41] |
Park K and Lee H 2001 Proceedings ACM SIGCOM 2001 (San Diego)
|
[42] |
Gomez-Gardenes J, Echenique P and Moreno Y 2006 Eur. Phys. J. B 49 259
|
[43] |
Huang H, Raymond J and Wong K Y M 2014 J. Stat. Phys. (in press) (2012 arXiv:1209.4134 [cond-mat.dis-nn])
|
[44] |
Harant J 1998 Discr. Math. 188 239
|
[45] |
Caro C 1979 Technical Reports (Tel-Aviv University)
|
[46] |
Wei V K 1981 Techinical Reports 81-11217-9 (Bell Laboratories NJ)
|
[47] |
Harant J 2011 Disc. Appl. Math. 159 966
|
[48] |
Harant J 2006 Discussiones Mathematicae Graph Theory 26 431
|
[49] |
Angel E, Campigotto R and Laforest C 2013 Disc. Appl. Math. 161 847
|
[50] |
Bollobás B 2001 Random Graphs (2nd edn.) (Cambridge: Cambridge University Press)
|
[51] |
Erdös P and Rényi A 1960 Publ. Math. Inst. Hung. Acad. Sci. 5 17
|
[52] |
Gazmuri P G 1984 Network 14 367
|
[53] |
Dani V and Moore C 2011 Lect. Notes Comput. Sci. 6845 472
|
[54] |
Frieze A M 1990 Discr. Math. 81 171
|
[55] |
Bauer M and Golinelli O 2001 Eur. Phys. J. B 24 339
|
[56] |
Newman M E J and Barkema G T 1999 Monte Carlo Methods in Statistical Physics (USA: Oxford University Press)
|
[57] |
Landau D and Binder K 2013 A Guide to Monte Carlo Simulations in Statistical Physics (3rd edn.) (Cambridge: Cambrige University Press)
|
[58] |
Bathel W and Hartmann A K 2004 Phys. Rev. E 70 066120
|
[59] |
Marinari K and Paris G 1992 Europhys. Lett. 19 45
|
[60] |
Hukushima K and Nemoto K 1996 J. Phys. Soc. Jpn. 65 1604
|
[61] |
Zhou H J 2005 Phys. Rev. Lett. 94 217203
|
[62] |
Zhou H J 2012 Phys. Rev. Lett. 109 199901
|
[63] |
Liu Y Y, Csóka E, Zhou H J and Pósfai M 2012 Phys. Rev. Lett. 109 205703
|
[64] |
Zhou H J 2014 Spin Glasses and Message Passing (in preparation)
|
[65] |
Wei W, Zhang R, Guo B and Zhang Z 2012 Phys. Rev. E 86 016112
|
[66] |
Binder K and Young A P 1986 Rev. Mod. Phys. 58 801
|
[67] |
Bethe H A 1935 Proc. R. Soc. London A 150 552
|
[68] |
Peierls R 1936 Proc. R. Soc. London A 154 207
|
[69] |
Peierls R 1936 Proc. Camb. Phil. Soc. 32 477
|
[70] |
Xiao J Q and Zhou H J 2011 J. Phys. A: Math. Theor. 44 425001
|
[71] |
Zhou H J and Wang C 2012 J. Stat. Phys. 148 513
|
[72] |
Bramoullé Y and Kranton R 2007 J. Econ. Theory 135 478
|
[73] |
Galeotti A, Goyal S, Jackson M, Vega-Redondo F and Yariv L 2010 Rev. Econ. Stud. 77 218
|
[74] |
Ritort F and Sollich P 2003 Add. Phys. 52 219
|
[75] |
Brešar B, Kardoš F, Katrenič J and Semanišin G 2011 Disc. Appl. Math. 159 1189
|
[76] |
Novotný M 2010 Lect. Notes Comput. Sci. 6033 106
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|