Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(5): 054203    DOI: 10.1088/1674-1056/23/5/054203
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Correspondence normalized ghost imaging on compressive sensing

Zhao Sheng-Mei (赵生妹), Zhuang Peng (庄鹏)
Institute of Signal Processing & Transmission, Nanjing University of Posts and Telecommunications, Nanjing 210003, China
Abstract  Ghost imaging (GI) offers great potential with respect to conventional imaging techniques. It is an open problem in GI systems that a long acquisition time is be required for reconstructing images with good visibility and signal-to-noise ratios (SNRs). In this paper, we propose a new scheme to get good performance with a shorter construction time. We call it correspondence normalized ghost imaging based on compressive sensing (CCNGI). In the scheme, we enhance the signal-to-noise performance by normalizing the reference beam intensity to eliminate the noise caused by laser power fluctuations, and reduce the reconstruction time by using both compressive sensing (CS) and time-correspondence imaging (CI) techniques. It is shown that the qualities of the images have been improved and the reconstruction time has been reduced using CCNGI scheme. For the two-grayscale “double-slit” image, the mean square error (MSE) by GI and the normalized GI (NGI) schemes with the measurement number of 5000 are 0.237 and 0.164, respectively, and that is 0.021 by CCNGI scheme with 2500 measurements. For the eight-grayscale “lena” object, the peak signal-to-noise rates (PSNRs) are 10.506 and 13.098, respectively using GI and NGI schemes while the value turns to 16.198 using CCNGI scheme. The results also show that a high-fidelity GI reconstruction has been achieved using only 44% of the number of measurements corresponding to the Nyquist limit for the two-grayscale “double-slit” object. The qualities of the reconstructed images using CCNGI are almost the same as those from GI via sparsity constraints (GISC) with a shorter reconstruction time.
Keywords:  ghost imaging      compressive sensing      time-correspondence      normalizing  
Received:  21 August 2013      Revised:  22 October 2013      Accepted manuscript online: 
PACS:  42.50.Ar  
  42.30.Wb (Image reconstruction; tomography)  
  42.25.Kb (Coherence)  
  42.30.Va (Image forming and processing)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61271238), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20123223110003), and the University Natural Science Research Foundation of Jiangsu Province, China (Grant No. 11KJA510002).
Corresponding Authors:  Zhao Sheng-Mei     E-mail:  zhaosm@njupt.edu.cn
About author:  42.50.Ar; 42.30.Wb; 42.25.Kb; 42.30.Va

Cite this article: 

Zhao Sheng-Mei (赵生妹), Zhuang Peng (庄鹏) Correspondence normalized ghost imaging on compressive sensing 2014 Chin. Phys. B 23 054203

[1] Klyshko D N 1988 Photons and Nonlinear Optics (New York: Gordon and Breach Science)
[2] Pittman T B, Shih Y H, Strekalov D V and Sergienko A V 1995 Phys. Rev. A 52 R3429
[3] Strekalov D V, Sergienko A V, Klyshko D N and Shih Y H 1995 Phys. Rev. Lett. 74 3600
[4] Abouraddy A F, Saleh B E A, Sergienko A V and Teich M C 2001 Phys. Rev. Lett. 87 123602
[5] Zhao S M, Ding J, Dong X L and Zheng B Y 2011 Chin. Phys. Lett. 28 124207
[6] Zhao S M,Yang H, Li Y Q, Cao F, Sheng Y B, Cheng W W and Gong L Y 2013 Opt. Commun. 294 223
[7] Li Y Q, Yang H, Liu J, Gong L Y, Sheng Y B, Cheng W W and Zhao S M 2013 Chin. Opt. Lett. 11 021104
[8] Bennink R S, Benley S J and Boyd R W 2002 Phys. Rev. Lett. 89 113601
[9] Gatti A, Brambilla E, Bache M and Lugiato L A 2004 Phys. Rev. A 70 013802
[10] Valencia A, Scarcelli G D, Angelo M and Shih Y H 2005 Phys. Rev. Lett. 94 063601
[11] Li H, Chen Z, Xiong J and Zeng G H 2012 Opt. Express 20 2956
[12] Li H, Xiong J and Zeng G H 2011 Opt. Eng. 50 127005
[13] Shapiro J H 2008 Phys. Rev. A 78 061802
[14] Gong W L and Han S S 2010 Phys. Lett. A 374 1005
[15] Ferri F, Magatti D, Lugiato L A and Gatti A 2010 Phys. Rev. Lett. 104 253603
[16] Sun B Q, Welsh S S, Edgar M P, Shapiro J H and Padgett M J 2012 Opt. Express 20 16892
[17] Gong W L and Han S S 2012 Phys. Lett. A 376 1519
[18] Katz O, Bromberg Y and Silberberg Y 2009 Appl. Phys. Lett. 95 131110
[19] Wang H and Han S S 2012 Europhys. Lett. 98 24003
[20] Zhao C Q, Gong W L, Chen M L, Li E R, Wang H, Xu W D and Han S S 2013 Appl. Phys. Lett. 101 141123
[21] Gong W L and Han S S 2012 Phys. Lett. A 376 1519
[22] Du J, Gong W L and Han S S 2012 Opt. Lett. 37 1067
[23] Gong W L and Han S S 2012 J. Opt. Soc. Am. A 29 1571
[24] Gong W L and Han S S 2013 Appl. Phys. Lett. 102 021111
[25] Bai X, Li Y Q and Zhao S M 2013 Acta Phys. Sin. 62 044209 (in Chinese)
[26] Luo K H, Huang B Q, Zheng W M and Wu L A 2012 Chin. Phys. Lett. 29 074216
[27] Li M F, ZhangY R, Luo K H, Wu L A and Fan H 2013 Phys. Rev. A 87 033813
[28] Wen J M 2013 J. Opt. Soc. Am. A 29 1906
[29] Bai Y F, Yang W X and Yu X Q 2012 Chin. Phys. B 21 044206
[30] Liu Q, Luo K H, Chen X H and Wu L A 2010 Chin. Phys. B 19 094211
[31] Katkovnik V and Astola J 2012 J. Opt. Soc. Am. A 29 1556
[32] Meyers R E, Deacon K S and Shih Y H 2012 Appl. Phys. Lett. 100 131114
[33] Hardy N D and Shapiro J H 2013 Phys. Rev. A 87 023820
[34] Chen W and Chen X D 2013 Opt. Lett. 38 546
[35] Zhang E F and Dai H Y 2011 Acta Phys. Sin. 60 064209 (in Chinese)
[36] Yang H and Zhao S M 2012 Acta Opt. Sin. 32 243 (in Chinese)
[37] Donoho D L 2006 IEEE Trans. Infor. 52 1289
[38] Candes E J and Wakin M B 2008 IEEE Signal Process. Mag. 25 21, and refrences therein
[39] Koschan A and Abidi M 2008 Digital Color Image Processing (New Jersey: Wiley-Interscience)
[1] A probability theory for filtered ghost imaging
Zhong-Yuan Liu(刘忠源), Shao-Ying Meng(孟少英), and Xi-Hao Chen(陈希浩). Chin. Phys. B, 2023, 32(4): 044204.
[2] Ghost imaging based on the control of light source bandwidth
Zhao-Qi Liu(刘兆骐), Yan-Feng Bai(白艳锋), Xuan-Peng-Fan Zou(邹璇彭凡), Li-Yu Zhou(周立宇), Qin Fu(付芹), and Xi-Quan Fu(傅喜泉). Chin. Phys. B, 2023, 32(3): 034210.
[3] Lossless embedding: A visually meaningful image encryption algorithm based on hyperchaos and compressive sensing
Xing-Yuan Wang(王兴元), Xiao-Li Wang(王哓丽), Lin Teng(滕琳), Dong-Hua Jiang(蒋东华), and Yongjin Xian(咸永锦). Chin. Phys. B, 2023, 32(2): 020503.
[4] Imaging a periodic moving/state-changed object with Hadamard-based computational ghost imaging
Hui Guo(郭辉), Le Wang(王乐), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2022, 31(8): 084201.
[5] Orthogonal-triangular decomposition ghost imaging
Jin-Fen Liu(刘进芬), Le Wang(王乐), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2022, 31(8): 084202.
[6] Efficient implementation of x-ray ghost imaging based on a modified compressive sensing algorithm
Haipeng Zhang(张海鹏), Ke Li(李可), Changzhe Zhao(赵昌哲), Jie Tang(汤杰), and Tiqiao Xiao(肖体乔). Chin. Phys. B, 2022, 31(6): 064202.
[7] Iterative filtered ghost imaging
Shao-Ying Meng(孟少英), Mei-Yi Chen(陈美伊), Jie Ji(季杰), Wei-Wei Shi(史伟伟), Qiang Fu(付强), Qian-Qian Bao(鲍倩倩), Xi-Hao Chen(陈希浩), and Ling-An Wu(吴令安). Chin. Phys. B, 2022, 31(2): 028702.
[8] Full color ghost imaging by using both time and code division multiplexing technologies
Le Wang(王乐), Hui Guo(郭辉), and Shengmei Zhao(赵生妹). Chin. Phys. B, 2022, 31(11): 114202.
[9] High speed ghost imaging based on a heuristic algorithm and deep learning
Yi-Yi Huang(黄祎祎), Chen Ou-Yang(欧阳琛), Ke Fang(方可), Yu-Feng Dong(董玉峰), Jie Zhang(张杰), Li-Ming Chen(陈黎明), and Ling-An Wu(吴令安). Chin. Phys. B, 2021, 30(6): 064202.
[10] Handwritten digit recognition based on ghost imaging with deep learning
Xing He(何行), Sheng-Mei Zhao(赵生妹), and Le Wang(王乐). Chin. Phys. B, 2021, 30(5): 054201.
[11] Ghost imaging-based optical cryptosystem for multiple images using integral property of the Fourier transform
Yi Kang(康祎), Leihong Zhang(张雷洪), Hualong Ye(叶华龙), Dawei Zhang(张大伟), and Songlin Zhuang(庄松林). Chin. Phys. B, 2021, 30(12): 124207.
[12] Computational ghost imaging with deep compressed sensing
Hao Zhang(张浩), Yunjie Xia(夏云杰), and Deyang Duan(段德洋). Chin. Phys. B, 2021, 30(12): 124209.
[13] Compressed ghost imaging based on differential speckle patterns
Le Wang(王乐), Shengmei Zhao(赵生妹). Chin. Phys. B, 2020, 29(2): 024204.
[14] Super-resolution filtered ghost imaging with compressed sensing
Shao-Ying Meng(孟少英), Wei-Wei Shi(史伟伟), Jie Ji(季杰), Jun-Jie Tao(陶俊杰), Qian Fu(付强), Xi-Hao Chen(陈希浩), and Ling-An Wu(吴令安). Chin. Phys. B, 2020, 29(12): 128704.
[15] Experimental demonstration of influence of underwater turbulence on ghost imaging
Man-Qian Yin(殷曼倩), Le Wang(王乐), Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2019, 28(9): 094201.
No Suggested Reading articles found!