Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(3): 035205    DOI: 10.1088/1674-1056/23/3/035205
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Preparation of biomedical Ag incorporated hydroxyapatite/titania coatings on Ti6Al4V alloy by plasma electrolytic oxidation

Zhou Lan (周澜)a b c, Lü Guo-Hua (吕国华)c, Mao Fei-Fei (毛菲菲)d, Yang Si-Ze (杨思泽)c e
a College of Mathematics & Physics, Nanjing University of Posts and Telecommunications, Nanjing 210003, China;
b Key Lab of Broadband Wireless Communication and Sensor Network Technology, Nanjing University of Posts and Telecommunications, Ministry of Education, Nanjing 210003, China;
c Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
d Department of Oral and Maxillofacial Surgery, Interdisciplinary Laboratory, Peking University School of Stomatology, Beijing 100081, China;
e Fujian Key Laboratory for Plasma and Magnetic Resonance, Department of Aeronautics, School of Physics and Mechanical & Electrical Engineering, Xiamen University, Xiamen 361005, China
Abstract  Nano-Ag incorporated hydroxyapatite/titania (HA/TiO2) coatings were deposited on Ti6Al4V substrates by the plasma electrolytic oxidation process. Compared with the substrate, the deposited coatings display attractive mechanical and biomedical properties. First, the coatings have stronger wear resistance and corrosion resistance. Second, they show a strong antibacterial ability. The mean vitality of the P. gingivalis on the coating surfaces is reduced to about 21%. Third, the coatings have good biocompatibility. The mean viability of the fibroblast cells on the coating surface is increased to about 130%. With these attractive properties, Ag incorporated HA/TiO2 coatings may be useful in the biomedical field.
Keywords:  hydroxyapatite      corrosion resistance      antibacterial ability      biocompatibility  
Received:  20 September 2013      Revised:  05 November 2013      Accepted manuscript online: 
PACS:  52.80.Wq (Discharge in liquids and solids)  
  68.55.Nq (Composition and phase identification)  
Fund: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 11005151), the National Natural Science Foundation of China (Grant No. 11347110), the Open Research Fund of the Key Lab of Broadband Wireless Communication and Sensor Network Technology of Ministry of Education, Nanjing University of Posts and Telecommunications, China (Grant No. NYKL201303), the Scientific Research Foundation of Nanjing University of Posts and Telecommunications, China (Grant No. NY213054), and the Priority Academic Program Development of Jiangsu Higher Education Institutions, China.
Corresponding Authors:  Zhou Lan, Lü Guo-Hua     E-mail:  zhoul@njupt.edu.cn;lvguohua@aphy.iphy.ac.cn

Cite this article: 

Zhou Lan (周澜), Lü Guo-Hua (吕国华), Mao Fei-Fei (毛菲菲), Yang Si-Ze (杨思泽) Preparation of biomedical Ag incorporated hydroxyapatite/titania coatings on Ti6Al4V alloy by plasma electrolytic oxidation 2014 Chin. Phys. B 23 035205

[1] Kasemo B and Prosthet J 1983 Dent. 49 832
[2] Sennerby L, Thomsen P and Ericson L E 1992 J. Mater. Sci: Mater. Med. 3 262
[3] Steflif D E, Sisk A L, Parr G R, Garner L K, Hanes P J, Lake F T, Berkery D J and Brewer P 1993 J. Biomed. Mater. Res. 27 791
[4] Costerton J W, Stewart P S and Greenberg E P 1999 Science 284 1318
[5] Nasser S 1992 Orthop. Clin. North. Am. 23 265
[6] Hendriks J G E, van Horn J R, van der Mei H C and Busscher H J 2004 Biomaterials 25 545
[7] Han Y, Hong S H and Xu K W 2003 Surf. Coat. Technol. 168 249
[8] Sun X T, Jiang Z H, Xin S G and Yao Z P 2005 Thin Solid Films 471 194
[9] Nie X, Leyland A and Matthews A 2000 Surf. Coat. Technol. 125 407
[10] Gu J D and Chen P L 2006 Surf. Coat. Technol. 200 3341
[11] Zhou L, Lv G H, Ji C and Yang S Z 2012 Thin Solid Film 520 2505
[12] Zhou L, Lv G H, Pang H, Zhang G P and Yang S Z 2012 Surf. Coat. Technol. 206 2552
[13] Wei D and Zhou Y 2009 Ceram. Int. 35 2343
[14] Han J Y, Yu Z T and Zhou L 2008 Appl. Surf. Sci. 255 455
[15] Qiu D, Yang L, Yin Y and Wang A 2011 Surf. Coat. Technol. 205 3280
[16] Bauer T W, Geesink R G T, Zimmerman R and McMahon J T 1991 J. Bone J. Surg. 73 1439
[17] Clemens J A M, Klein C P A T, Vriesde R C, Rozing P M and de Groot K 1998 J. Biomed. Mater. Res. 40 341
[18] Dunn D S, Raghavan S and Volz R G 1993 J. Biomed. Mater. Res. 27 895
[19] Chen H, Lv G H, Zhang G L, Pang H, Wang X Q, Lee H J and Yang S Z 2010 Surf. Coat. Technol. 205 S32
[20] Curran J A and Clyne T W 2006 Acta Materialia 54 1985
[21] Curran J A and Clyne T W 2005 Surf. Coat. Technol. 199 168
[22] Yerokhin A L, Nie X, Leyland A and Matthews A 2000 Surf. Coat. Technol. 130 195
[23] Esposito M, Hirsch J M, Lekholm U and Thomsen P 1998 Eur. J. Oral Sci. 106 721
[24] Kotharu V, Nagumothu R, Arumugam C B, Veerappan M, Sankaran S and Davoodbasha M 2012 Ceram. Int. 38 731
[25] van de Belt H, Neut D, Schenk W, van Horn J R, van der Mei H C and Busscher H J 2001 Acta Orthop. 72 557
[26] Shi Z, Neoh K G, Kang E T and Wang W 2006 Biomaterials 27 2440
[27] Lansdown A B G, Williams A, Chandler S and Benfield S 2005 J. Wound Care 14 155
[28] Bosetti M, Masse A, Tobin E and Cannas M 2002 Biomaterials 23 887
[29] Grunlan J C, Choi J K and Lin A 2005 Biomacromolecules 6 1149
[30] Ewald A, Gluckermann S K, Thull R and Gbureck U 2006 Biomed. Eng. Online 5 22
[31] Saint S, Elmore J G, Sullivan S D, Emerson S S and Koepsell T D 1998 Am. J. Med. 105 236
[32] Darouiche R O 1999 Clin. Infect. Dis. 29 1371
[33] Alt V, Bechert T, Steinrucke P, Wagener M, Seidel P, Dingeldein E, Domann E and Schnettler R 2004 Biomaterials 25 4383
[34] Sun J, Han Y and Huang X 2007 Surf. Coat. Technol. 201 5655
[35] Han Y, Sun J F and Huang X 2008 Electrochem. Commun. 10 510
[36] Van T B, Brown S D and Wirtz G P 1977 J. Bull, Am. Ceram. Soc. 56 563
[37] Vijh A K 1971 Corros. Sci. 11 411
[38] Yerokhin A L, Nie X, Leyland A, Matthews A and Dowey S J 1999 Surf. Coat. Technol. 122 73
[39] Bayati M R, Moshfegh A Z and Golestani-Fard F 2010 Electrochim. Acta 55 3093
[40] Lv G H, Chen H, Wang X Q, Pang H, Zhang G L, Zou B, Lee H J and Yang S Z 2010 Chin. Phys. B 19 085202
[41] Zhang G L, Wang J L, Liu Y F, Liu C Z and Yang S Z 2004 Chin. Phys. B 13 1309
[42] Tang H, Sun Q, Yi C G, Jiang Z H and Wang F P 2012 J. Mater. Sci. 47 2162
[43] Wang Z J, Wu L N, Cai W, A S and Jiang Z H 2010 J. Alloys Compd. 505 188
[44] Angelini E, Grassini S, Rosalbino F, Fracassi F and d’Agostino R 2003 Prog. Org. Coat. 46 107
[45] Creus J, Mazille H and Idrissi H 2000 Surf. Coat. Technol. 130 224
[46] Shirkhanzadeh M and Azadegan M 1998 J. Mater. Sci. Mater. Med. 9 385
[47] Ghani Y, Coathup M J, Hing K A and Blunn G W 2012 J. Orthop. Res. 30 356
[48] Sotiriou G A and Pratsinis S E 2010 Environ. Sci. Technol. 44 5649
[49] Feng Q L, Wu J, Chen G Q, Cui F Z, Kim T N and Kim J O 2000 J. Biomed. Mater. Res. 52 662
[50] AshaRani P V, Low Kah Mun G, Hande M P and Valiyaveettil S 2009 ACS Nano 3 279
[51] Cao X L, Cheng C, Ma Y L and Zhao C S 2010 J. Mater. Sci. Mater. Med. 21 2861
[52] Watari F, Takashi N, Yokoyama A, Uo M, Akasaka T, Sato T, Abe S and Totsuka Tohji K 2009 J. R. Soc. Interface 6 371
[53] Aillon K L, Xie Y, El-Gendy N, Berkland C J and Forrest M L 2009 Adv. Drug. Deliv. Rev. 61 457
[54] Chen Y, Zheng X, Xie Y, Ding C, Ruan H and Fan C 2008 J. Mater. Sci. Mater. Med. 19 3603
[1] Effects of WC-Co reinforced Ni-based alloy by laser melting deposition: Wear resistance and corrosion resistance
Zhao-Zhen Huang(黄昭祯), Zhi-Chen Zhang(张志臣), Fan-Liang Tantai(澹台凡亮), Hong-Fang Tian(田洪芳), Zhen-Jie Gu(顾振杰), Tao Xi(郗涛), Zhu Qian(钱铸), and Yan Fang(方艳). Chin. Phys. B, 2021, 30(1): 016802.
[2] Grain boundary restructuring and La/Ce/Y application in Nd-Fe-B magnets
Mi Yan(严密), Jiaying Jin(金佳莹), Tianyu Ma(马天宇). Chin. Phys. B, 2019, 28(7): 077507.
[3] Influences of substrate temperature on microstructure and corrosion behavior of APS Ni50Ti25Al25 inter-metallic coating
Sh Khandanjou, M Ghoranneviss, Sh Saviz, M Reza Afshar. Chin. Phys. B, 2018, 27(2): 028104.
[4] Enhanced biocompatibility of ZnS:Mn quantum dots encapsulated with Aloe vera extract for therapeutic applications
Anilkumar M, Bindu K R, Sneha Saj A, Anila E I. Chin. Phys. B, 2016, 25(8): 088103.
[5] Improvement in coercivity,thermal stability,and corrosion resistance of sintered Nd-Fe-B magnets with Dy80Ga20 intergranular addition
Beibei Zhou(周贝贝), Xiangbin Li(李向斌), Xuejing Cao(曹学静), Gaolin Yan(严高林), Aru Yan(闫阿儒). Chin. Phys. B, 2016, 25(11): 117504.
[6] Effects of N2/O2 flow rate on the surface properties and biocompatibility of nano-structured TiOxNy thin films prepared by high vacuum magnetron sputtering
Sehrish Saleem, R. Ahmad, Uzma Ikhlaq, R. Ayub, Jin Wei Hong, Xu Rui Zhen, Li Peng Hui, Khizra Abbas, Paul K. Chu. Chin. Phys. B, 2015, 24(7): 075202.
[7] Surface morphology and electrochemical characterization of electrodeposited Ni–Mo nanocomposites as cathodes for hydrogen evolution
Elhachmi Guettaf Temam, Hachemi Ben Temam, Said Benramache. Chin. Phys. B, 2015, 24(10): 108202.
[8] In-situ growth of Ca/P salt on Ti surface induced by femtosecond lasers in hydroxyapatite suspension
Liang Chun-Yong(梁春永), Wang Hong-Shui(王洪水), Yang Yang(杨阳), Yang Jian-Jun(杨建军), Chen Gui-Feng(陈贵锋), and Li Chang-Yi(李长义). Chin. Phys. B, 2010, 19(9): 094208.
[9] Properties of TiN coating on 45# steel for inner surface modification by grid-enhanced plasma source ion implantation method
Zhang Gu-Ling (张谷令), Wang Jiu-Li (王久丽), Liu Yuan-Fu (刘元富), Liu Chi-Zi (刘赤子), Yang Si-Ze (杨思泽). Chin. Phys. B, 2004, 13(8): 1309-1314.
[10] Phase transition and pitting corrosion behaviour for Mo-implanted aluminium
Zhang Tong-He (张通和), Wu Yu-Guang (吴瑜光), Liu Pei-Ying (刘培英), Qian Wei-Dong (钱卫东). Chin. Phys. B, 2002, 11(3): 272-276.
No Suggested Reading articles found!