Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(3): 035204    DOI: 10.1088/1674-1056/23/3/035204
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

On the energy conservation electrostatic particle-in-cell/Monte Carlo simulation:Benchmark and application to the radio frequency discharges

Wang Hong-Yu (王虹宇)a, Jiang Wei (姜巍)b, Sun Peng (孙鹏)a, Kong Ling-Bao (孔令宝)c
a School of Physics Science and Technology, Anshan Normal University, Anshan 114005, China;
b School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China;
c School of Science & Beijing Key Laboratory of Environmentally Harmful Chemicals Assessment, Beijing University of Chemical Technology, Beijing 100029, China
Abstract  We benchmark and analyze the error of energy conservation (EC) scheme in particle-in-cell/Monte Carlo (PIC/MC) algorithms by simulating the radio frequency discharge. The plasma heating behaviors and electron distributing functions obtained by one-dimensional (1D) simulation are analyzed. Both explicit and implicit algorithms are checked. The results showed that the EC scheme can eliminated the self-heating with wide grid spacing in both cases with a small reduction of the accuracies. In typical parameters, the EC implicit scheme has higher precision than EC explicit scheme. Some “numerical cooling” behaviors are observed and analyzed. Some other errors are also analyzed. The analysis showed that the EC implicit scheme can be used to qualitative estimation of some discharge problems with much less computational resource cost without much loss of accuracies.
Keywords:  particle-in-cell/Monte Carlo simulation      energy conservation      grid heating      discharging simulation  
Received:  20 May 2013      Revised:  12 July 2013      Accepted manuscript online: 
PACS:  52.80.Pi (High-frequency and RF discharges)  
  52.27.Aj (Single-component, electron-positive-ion plasmas)  
  52.65.Rr (Particle-in-cell method)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11275007, 11105057, 11175023, and 11275039) and the Program for Liaoning Excellent Talents in University, China (Grant No. LJQ2012098).
Corresponding Authors:  Sun Peng     E-mail:  sunpeng169@126.com

Cite this article: 

Wang Hong-Yu (王虹宇), Jiang Wei (姜巍), Sun Peng (孙鹏), Kong Ling-Bao (孔令宝) On the energy conservation electrostatic particle-in-cell/Monte Carlo simulation:Benchmark and application to the radio frequency discharges 2014 Chin. Phys. B 23 035204

[1] Birdsall C K and Langdon A B 1985 Plasma Physics via Computer Simulation (New York: McGraw-Hill)
[2] Verboncoeur J P 2005 Plasma Phys. Control. Fusion 47 A231
[3] Lieberman M A and Lichtenberg A J 2005 Principles of Plasma Discharges and Materials Processing (2nd edn.) (New York: Wiley)
[4] Zhao H Y and Mu Z X 2008 Chin. Phys. B 17 1475
[5] Shi F, Zhang L L and Wang D Z 2009 Chin. Phys. B 18 1674
[6] Liu C S, Han H Y, Peng X Q, Chang Y and Wang D Z 2010 Chin. Phys. B 19 035201
[7] Jin X L, Huang T, Liao P and Yang Z H 2009 Acta Phys. Sin. 58 5526 (in Chinese)
[8] Wang H H, Liu D G, Meng L, Liu L Q, Yang C, Peng K and Xia M Z 2013 Acta Phys. Sin. 62 015207 (in Chinese)
[9] Tskhakaya D, Matyash K, Schneider R and Taccogna F 2007 Contrib. Plasma. Phys. 47 563
[10] Hockney R W and Eastwood J W 1988 Computer Simulation Using Particles (New York: Adams Hilger)
[11] Taccogn F, Longo S, Capitelli M and Schneider R 2004 Comput. Phys. Commun. 164 160
[12] Abe H, Sakairi N and Itatani R 1986 J. Comput. Phys. 63 247
[13] Sentoku Y and Kemp A J J 2008 Comput. Phys. 227 6846
[14] Cai H B, Mima K, Sunahara A, Johzaki T, Nagatomo H, Zhu S P and He X T 2010 Phys. Plasma. 17 023106
[15] Langdon A B, Cohen B I and Friedman A 1983 J. Comput. Phys. 51 107
[16] Friedman A 1990 J. Comput. Phys. 90 292
[17] Wang H Y, Jiang W and Wang Y N 2010 Plasma Sources Sci. Technol. 19 045023
[18] Vahedi V, DiPeso G, Birdsall C K, Lieberman M A and Rognlien T D 1993 Plasma Sources Sci. Technol. 2 261
[19] Ricci P, Lapenta G and Brackbill J U 2002 J. Comput. Phys. 183 117
[20] Welch D R, Rose D V, Cuneo M E, Campbell R B and Mehlhorn T A 2006 Phys. Plasma. 13 063105
[21] Eastwood J W 1991 Comput. Phys. Commun. 64 252
[22] Eastwood J W, Arter W, Brealey N J and Hockney R W 1995 Comput. Phys. Commun. 87 155
[23] Pointon T D 2008 Comput. Phys. Commun. 179 535
[24] Markidis S and Lapenta G 2011 J. Comput. Phys. 230 7037
[25] Brackbill J U and Cohen B I 1985 Multiple Time Scales (London: Academic Press Inc)
[26] Birdsall C K 1991 IEEE. Trans. Plasma. Sci. 19 65
[27] Langdon A B 1973 J. Comput. Phys. 12 247
[28] Jiang W, Xu X, Dai Z L and Wang Y N 2008 Phys. Plasma. 15 033502
[29] Xu H X and Brackbill J U 1992 Comput. Phys. Commun. 69 253
[30] Turner M M 2006 Phys. Plasma. 13 033506
[1] Factors influencing electromagnetic scattering from the dielectric periodic surface
Yinyu Wei(韦尹煜), Zhensen Wu(吴振森), Haiying Li(李海英), Jiaji Wu(吴家骥), Tan Qu(屈檀). Chin. Phys. B, 2019, 28(7): 074101.
[2] A local energy-preserving scheme for Zakharov system
Qi Hong(洪旗), Jia-ling Wang(汪佳玲), Yu-Shun Wang(王雨顺). Chin. Phys. B, 2018, 27(2): 020202.
[3] Local structure-preserving methods for the generalized Rosenau-RLW-KdV equation with power law nonlinearity
Jia-Xiang Cai(蔡加祥), Qi Hong(洪旗), Bin Yang(杨斌). Chin. Phys. B, 2017, 26(10): 100202.
[4] Implicit electrostatic particle-in-cell/Monte Carlo simulation for the magnetized plasma: Algorithms and application in gas-inductive breakdown
Wang Hong-Yu (王虹宇), Sun Peng (孙鹏), Jiang Wei (姜巍), Zhou Jie (周杰), Xie Bai-Song (谢柏松). Chin. Phys. B, 2015, 24(6): 065207.
[5] A local energy-preserving scheme for Klein–Gordon–Schrödinger equations
Cai Jia-Xiang (蔡加祥), Wang Jia-Lin (汪佳玲), Wang Yu-Shun (王雨顺). Chin. Phys. B, 2015, 24(5): 050205.
[6] Fermion tunneling of charged particles from a non-static black hole in de Sitter space
Li Hui-Ling(李慧玲) and Yang Shu-Zheng(杨树政). Chin. Phys. B, 2009, 18(11): 4721-4725.
[7] The quantum tunnelling radiation of Schwarzschild de Sitter black hole with a global monopole
Chen De-You (陈德友), Jiang Qing-Quan (蒋青权), Li Hui-Ling (李慧玲), Yang Shu-Zheng (杨树政). Chin. Phys. B, 2006, 15(7): 1425-1429.
[8] Quantum tunnelling radiation of Einstein--Maxwell--Dilaton--Axion black hole
Yang Shu-Zheng (杨树政), Jiang Qing-Quan (蒋青权), Li Hui-Ling (李慧玲). Chin. Phys. B, 2005, 14(12): 2411-2414.
No Suggested Reading articles found!