Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(12): 120508    DOI: 10.1088/1674-1056/22/12/120508
GENERAL Prev   Next  

The Korteweg-de Vires equation for the bidirectional pedestrian flow model considering the next-nearest-neighbor effect

Xu Li (徐立)a, Lo Siu-Ming (卢兆明)b, Ge Hong-Xia (葛红霞)c
a Faculty of Science, Ningbo University, Ningbo 315211, China;
b Department of Civil and Architectural Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong;
c Faculty of Maritime and Transportation, Ningbo University, Ningbo 315211, China
Abstract  This paper focuses on a two-dimensional bidirectional pedestrian flow model which involves the next-nearest-neighbor effect. The stability condition and the Korteweg-de Vries (KdV) equation are derived to describe the density wave of pedestrian congestion by linear stability and nonlinear analysis. Through theoretical analysis, the soliton solution is obtained.
Keywords:  bidirectional pedestrian flow      lattice hydrodynamic model      KdV equation  
Received:  12 December 2012      Revised:  28 May 2013      Accepted manuscript online: 
PACS:  05.70.Fh (Phase transitions: general studies)  
  89.40.+k  
  05.90.+m (Other topics in statistical physics, thermodynamics, and nonlinear dynamical systems)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11072117), the Scientific Research Fund of Zhejiang Province, China (Grant No. LY13A010005), the Disciplinary Project of Ningbo City, China (Grant No. SZXL1067), the Scientific Research Fund of Education Department of Zhejiang Province, China (Grant No. Z201119278), the Natural Science Foundation of Ningbo City, China (Grant Nos. 2012A610152 and 2012A610038), the K. C. Wong Magna Fund in Ningbo University, China, and the Research Grant Council, Government of the Hong Kong Administrative Region, China (Grant No. CityU119011).
Corresponding Authors:  Ge Hong-Xia     E-mail:  gehongxia@nbu.edu.cn

Cite this article: 

Xu Li (徐立), Lo Siu-Ming (卢兆明), Ge Hong-Xia (葛红霞) The Korteweg-de Vires equation for the bidirectional pedestrian flow model considering the next-nearest-neighbor effect 2013 Chin. Phys. B 22 120508

[1] Hughes R L 2003 Ann. Rev. Fluid Mech. 35 169
[2] Hughes R L 2002 Transp. Res. B 36 507
[3] Burstedde C, Klauck K, Schadschneider A and Zittartz J 2001 Physica A 295 507
[4] Blue V J and Adler J L 2001 Transp. Res. B 35 293
[5] Peng G H, Cai X H, Cao B F and Liu C Q 2012 Physica A 391 656
[6] Tang T Q, Huang H J and Xu G 2008 Physica A 387 6845
[7] Zhu H B, Lei L and Dai S Q 2009 Physica A 388 2903
[8] Tang T Q, Huang H J, Wong S C and Jiang R 2009 Chin. Phys. B 18 975
[9] Jiang R and Wu Q S 2005 Physica A 355 551
[10] Helbing D, Farkas I J and Vicsek T 2000 Phys. Rev. Lett. 84 1240
[11] Helbing D, Farkas I J and Vicsek T 2000 Nature 407 487
[12] Nagatani T 1999 Physica A 264 581
[13] Nagatani T 1999 Phys. Rev. E 59 4857
[14] Nagatani T 1999 Physica A 265 297
[15] Xue Y 2004 Acta Phys. Sin. 53 25 (in Chinese)
[16] Tian H H, He H D, Wei Y F, Xue Y and Lu W Z 2009 Physica A 388 2895
[17] Xue Y, Tian H H, He H D, Lu W Z and Wei Y F 2009 Eur. Phys. J. B 69 289
[18] Wen J, Tian H H and Xue Y 2010 Acta Phys. Sin. 59 3817 (in Chinese)
[19] Ge H X, Cheng R J and Dai S Q 2005 Physica A 357 466
[1] A novel lattice model integrating the cooperative deviation of density and optimal flux under V2X environment
Guang-Han Peng(彭光含), Chun-Li Luo(罗春莉), Hong-Zhuan Zhao(赵红专), and Hui-Li Tan(谭惠丽). Chin. Phys. B, 2023, 32(1): 018902.
[2] Bifurcation analysis of visual angle model with anticipated time and stabilizing driving behavior
Xueyi Guan(管学义), Rongjun Cheng(程荣军), and Hongxia Ge(葛红霞). Chin. Phys. B, 2022, 31(7): 070507.
[3] Consistent Riccati expansion solvability, symmetries, and analytic solutions of a forced variable-coefficient extended Korteveg-de Vries equation in fluid dynamics of internal solitary waves
Ping Liu(刘萍), Bing Huang(黄兵), Bo Ren(任博), and Jian-Rong Yang(杨建荣). Chin. Phys. B, 2021, 30(8): 080203.
[4] Stability analysis of multiple-lattice self-anticipative density integration effect based on lattice hydrodynamic model in V2V environment
Geng Zhang(张埂) and Da-Dong Tian(田大东). Chin. Phys. B, 2021, 30(12): 120201.
[5] Painlevé property, local and nonlocal symmetries, and symmetry reductions for a (2+1)-dimensional integrable KdV equation
Xiao-Bo Wang(王晓波), Man Jia(贾曼), and Sen-Yue Lou(楼森岳). Chin. Phys. B, 2021, 30(1): 010501.
[6] A novel (2+1)-dimensional integrable KdV equation with peculiar solution structures
Sen-Yue Lou(楼森岳). Chin. Phys. B, 2020, 29(8): 080502.
[7] Nonlocal symmetries and similarity reductions for Korteweg-de Vries-negative-order Korteweg-de Vries equation
Heng-Chun Hu(胡恒春), Fei-Yan Liu(刘飞艳). Chin. Phys. B, 2020, 29(4): 040201.
[8] Decaying solitary waves propagating in one-dimensional damped granular chain
Zongbin Song(宋宗斌), Xueying Yang(杨雪滢), Wenxing Feng(封文星), Zhonghong Xi(席忠红), Liejuan Li(李烈娟), Yuren Shi(石玉仁). Chin. Phys. B, 2018, 27(7): 074501.
[9] A new control method based on the lattice hydrodynamic model considering the double flux difference
Shunda Qin(秦顺达), Hongxia Ge(葛红霞), Rongjun Cheng(程荣军). Chin. Phys. B, 2018, 27(5): 050503.
[10] Bright and dark soliton solutions for some nonlinear fractional differential equations
Ozkan Guner, Ahmet Bekir. Chin. Phys. B, 2016, 25(3): 030203.
[11] Bottleneck effects on the bidirectional crowd dynamics
Xiao-Xia Yang(杨晓霞), Hai-Rong Dong(董海荣), Xiu-Ming Yao(姚秀明), Xu-Bin Sun(孙绪彬). Chin. Phys. B, 2016, 25(12): 128901.
[12] New solutions from nonlocal symmetry of the generalized fifth order KdV equation
Liu Xi-Zhong (刘希忠), Yu Jun (俞军), Ren Bo (任博). Chin. Phys. B, 2015, 24(8): 080202.
[13] Multi-symplectic method for the coupled Schrödinger-KdV equations
Zhang Hong (张弘), Song Song-He (宋松和), Zhou Wei-En (周炜恩), Chen Xu-Dong (陈绪栋). Chin. Phys. B, 2014, 23(8): 080204.
[14] Average vector field methods for the coupled Schrödinger–KdV equations
Zhang Hong (张弘), Song Song-He (宋松和), Chen Xu-Dong (陈绪栋), Zhou Wei-En (周炜恩). Chin. Phys. B, 2014, 23(7): 070208.
[15] Abundant solutions of Wick-type stochastic fractional 2D KdV equations
Hossam A. Ghany, Abd-Allah Hyder. Chin. Phys. B, 2014, 23(6): 060503.
No Suggested Reading articles found!