Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(12): 120506    DOI: 10.1088/1674-1056/22/12/120506
GENERAL Prev   Next  

Stability of operation versus temperature of a three-phase clock-driven chaotic circuit

Zhou Ji-Chao (周继超)a, Hyunsik Sona, Namtae Kimb, Han Jung Songa c
a Department of Nano Systems Engineering, Inje University, Gimhae 621-749, Korea;
b Department of Electronic Engineering, Inje University, Gimhae 621-749, Korea;
c Center for Nano Manufacturing, Inje University, Gimhae 621-749, Korea
Abstract  We evaluate the influence of temperature on the behavior of a three-phase clock-driven metal–oxide–semiconductor (MOS) chaotic circuit. The chaotic circuit consists of two nonlinear functions, a level shifter, and three sample and hold blocks. It is necessary to analyze a CMOS-based chaotic circuit with respect to variation in temperature for stability because the circuit is sensitive to the behavior of the circuit design parameters. The temperature dependence of the proposed chaotic circuit is investigated via the simulation program with integrated circuit emphasis (SPICE) using 0.6-μm CMOS process technology with a 5-V power supply and a 20-kHz clock frequency. The simulation results demonstrate the effects of temperature on the chaotic dynamics of the proposed chaotic circuit. The time series, frequency spectra, bifurcation phenomena, and Lyapunov exponent results are provided.
Keywords:  chaotic circuit      nonlinear functions      temperature effect      bifurcation      Lyapunov exponent  
Received:  03 August 2013      Revised:  17 September 2013      Accepted manuscript online: 
PACS:  05.45.Gg (Control of chaos, applications of chaos)  
  82.40.Bj (Oscillations, chaos, and bifurcations)  
  85.40.-e (Microelectronics: LSI, VLSI, ULSI; integrated circuit fabrication technology)  
  05.45.-a (Nonlinear dynamics and chaos)  
Fund: Project supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (Grant No. 2011-0011698).
Corresponding Authors:  Han Jung Song     E-mail:  hjsong@inje.ac.kr

Cite this article: 

Zhou Ji-Chao (周继超), Hyunsik Son, Namtae Kim, Han Jung Song Stability of operation versus temperature of a three-phase clock-driven chaotic circuit 2013 Chin. Phys. B 22 120506

[1] Pecora L M and Carroll T L 1990 Phys. Rev. Lett. 64 821
[2] Pecora L M and Carroll T L 1991 IEEE Trans. Circ. Sys. 38 453
[3] Dedieu H, Kennedy M P and Hasler M 1993 IEEE Trans. Circ. Syst. Ⅱ 40 634
[4] Corron N J and Hahs D W 1997 IEEE Trans. Circ. Syst. I 44 373
[5] Rosselló J L, Canals V, Paul I D and Bota S A 2008 IEICE Electronics Express 5 1042
[6] Yang T 2004 Int. J. Comp. Cognit. 2 81
[7] Puebla H and Alvarez-Ramirez J 2001 Phys. Lett. A 283 96
[8] García-López J H, Jaimes-Reategui R, Chiu-Zarate R, Lopez-Mancilla D, RamirezJimenez R and Pisarchik A N 2008 The Open Electrical and Electronic Engineering Journal 2 41
[9] Liu H J, Ren B and Feng J C 2012 Chin. Phys. B 21 040501
[10] Juncu V D, Rafiei-naeini M and Dudek P 2006 Analog Int. Circ. Syst. 46 275
[11] Dudek P and Juncu V D 2003 Electron. Lett. 39 1431
[12] Gopal S and Lai C Y 2009 Circ. Syst. Signal Process. 28 535
[13] Feki M, Robert B, Gelle G and Colas M 2003 Chaos, Solitons and Fractals 18 881
[14] Kharel R, Busawon K and Ghassemlooy Z 2010 American Control Conference, June 30–July 2, 2010, Baltimore, MD, p. 1791
[15] Stavrinides S G, Anagnostopoulos A N, Miliou A N, Valaristos A, Magafas L, Kosmatopoulos K and Papaioannou S 2009 J. Eng. Sci. Rev. 2 82
[16] Zhang Y and Wang X Y 2012 Chin. Phys. B 21 020507
[17] Gregori S and Cabrini A 2005 48th Midwest Symposium on Circuits and Systems, August 7–10, 2005, Covington, KY, p. 1498
[18] Govindarajulu S and Prasad T J 2010 Int. J. Eng. Sci. Tech. 2 2248
[19] Zhou J C and Song H J 2013 Chin. Phys. Lett. 30 020201
[20] Vadasz L and Grove A S 1966 IEEE Trans. Electron. Dev. 13 863
[21] Hasanuzzaman M, Islam S K and Tolbert L M 2004 Solid-State Electron. 48 125
[22] Ku J C and Ismail Y 2007 Circuits and Systems, 2007, ISCAS 2007, IEEE International Symposium on May 27–30, 2007, New Orleans, LA, p. 3736
[23] Kanda K, Nose K, Kawaguchi H and Sakurai T 2001 IEEE J. Solid-State Circ. 36 1559
[24] Vadasz L and Grove A S 1966 IEEE Trans. Electron. Dev. 13 863
[25] Osman A A and Osman M A 1998 Fourth International High Temperature Electronics Conference, June 14–18, 1998, Albuquerque, NM, p. 301
[26] Chen Y H, Imai K, Jeng M C, Liu Z H, Chen K and Hu C M 1997 Semicond. Sci. Tech. 12 1349
[27] Jacob Baker R 2010 CMOS Circuit Design, Layout, and Simulation, 3rd edn. (New York: Wiley-IEEE Press) p. 143
[28] Cheung T, Butson M J and Yu P K N 2004 Phys. Med. Biol. 49 191
[29] Tsividis Y P 1987 Operation and Modeling of the MOS Transistor, 2nd edn. (New York: McGraw-Hill) p. 189
[30] Sakuna N, Muanghlua R, Niemcharoen S and Ruangphanit A 2013 Kmitl. Sci. Tech. J. 13 9
[31] Horio Y, Aihara K and Yamamoto O 2003 IEEE Trans. Neural Netw. 14 1393
[32] Filanovsky I M and Allam A 2001 IEEE Trans. Circ. Syst. I: Fundam. Theory Appl. 48 876
[1] Hopf bifurcation and phase synchronization in memristor-coupled Hindmarsh-Rose and FitzHugh-Nagumo neurons with two time delays
Zhan-Hong Guo(郭展宏), Zhi-Jun Li(李志军), Meng-Jiao Wang(王梦蛟), and Ming-Lin Ma(马铭磷). Chin. Phys. B, 2023, 32(3): 038701.
[2] Current bifurcation, reversals and multiple mobility transitions of dipole in alternating electric fields
Wei Du(杜威), Kao Jia(贾考), Zhi-Long Shi(施志龙), and Lin-Ru Nie(聂林如). Chin. Phys. B, 2023, 32(2): 020505.
[3] Effect of pressure evolution on the formation enhancement in dual interacting vortex rings
Jianing Dong(董佳宁), Yang Xiang(向阳), Hong Liu(刘洪), and Suyang Qin(秦苏洋). Chin. Phys. B, 2022, 31(8): 084701.
[4] Core structure and Peierls stress of the 90° dislocation and the 60° dislocation in aluminum investigated by the fully discrete Peierls model
Hao Xiang(向浩), Rui Wang(王锐), Feng-Lin Deng(邓凤麟), and Shao-Feng Wang(王少峰). Chin. Phys. B, 2022, 31(8): 086104.
[5] Bifurcation analysis of visual angle model with anticipated time and stabilizing driving behavior
Xueyi Guan(管学义), Rongjun Cheng(程荣军), and Hongxia Ge(葛红霞). Chin. Phys. B, 2022, 31(7): 070507.
[6] The transition from conservative to dissipative flows in class-B laser model with fold-Hopf bifurcation and coexisting attractors
Yue Li(李月), Zengqiang Chen(陈增强), Mingfeng Yuan(袁明峰), and Shijian Cang(仓诗建). Chin. Phys. B, 2022, 31(6): 060503.
[7] Extremely hidden multi-stability in a class of two-dimensional maps with a cosine memristor
Li-Ping Zhang(张丽萍), Yang Liu(刘洋), Zhou-Chao Wei(魏周超), Hai-Bo Jiang(姜海波), Wei-Peng Lyu(吕伟鹏), and Qin-Sheng Bi(毕勤胜). Chin. Phys. B, 2022, 31(10): 100503.
[8] Multiple solutions and hysteresis in the flows driven by surface with antisymmetric velocity profile
Xiao-Feng Shi(石晓峰), Dong-Jun Ma(马东军), Zong-Qiang Ma(马宗强), De-Jun Sun(孙德军), and Pei Wang(王裴). Chin. Phys. B, 2021, 30(9): 090201.
[9] Effect of the particle temperature on lift force of nanoparticle in a shear rarefied flow
Jun-Jie Su(苏俊杰), Jun Wang(王军), and Guo-Dong Xia(夏国栋). Chin. Phys. B, 2021, 30(7): 075101.
[10] Delayed excitatory self-feedback-induced negative responses of complex neuronal bursting patterns
Ben Cao(曹奔), Huaguang Gu(古华光), and Yuye Li(李玉叶). Chin. Phys. B, 2021, 30(5): 050502.
[11] Analysis and implementation of new fractional-order multi-scroll hidden attractors
Li Cui(崔力), Wen-Hui Luo(雒文辉), and Qing-Li Ou(欧青立). Chin. Phys. B, 2021, 30(2): 020501.
[12] Stabilization strategy of a car-following model with multiple time delays of the drivers
Weilin Ren(任卫林), Rongjun Cheng(程荣军), and Hongxia Ge(葛红霞). Chin. Phys. B, 2021, 30(12): 120506.
[13] Transition to chaos in lid-driven square cavity flow
Tao Wang(王涛) and Tiegang Liu(刘铁钢). Chin. Phys. B, 2021, 30(12): 120508.
[14] Enhance sensitivity to illumination and synchronization in light-dependent neurons
Ying Xie(谢盈), Zhao Yao(姚昭), Xikui Hu(胡锡奎), and Jun Ma(马军). Chin. Phys. B, 2021, 30(12): 120510.
[15] Cascade discrete memristive maps for enhancing chaos
Fang Yuan(袁方), Cheng-Jun Bai(柏承君), and Yu-Xia Li(李玉霞). Chin. Phys. B, 2021, 30(12): 120514.
No Suggested Reading articles found!