Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(8): 080201    DOI: 10.1088/1674-1056/22/8/080201
GENERAL   Next  

An efficient block variant of robust structured multifrontal factorization method

Zuo Xian-Yu (左宪禹)a, Mo Ze-Yao (莫则尧)b, Gu Tong-Xiang (谷同祥)b
a School of Computer and Information Engineering, Henan University, Kaifeng 475004, China;
b Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, Beijing 100088, China
Abstract  Based on the two-dimensional three-temperature (2D3T) radiation diffusion equations and its discrete system, using the block diagonal structure of the three-temperature matrix, the reordering and symbolic decomposition parts of the RSMF method are replaced with corresponding block operation in order to improve the solution efficiency. We call this block form method block RSMF (in brief, BRSMF) method. The new BRSMF method not only makes the reordering and symbolic decomposition become more effective, but also keeps the cost of numerical factorization from increasing and ensures the precision of solution very well. The theoretical analysis of the computation complexity about the new BRSMF method shows that the solution efficiency about the BRSMF method is higher than the original RSMF method. The numerical experiments also show that the new BRSMF method is more effective than the original RSMF method.
Keywords:  HSS structure      low-rank property      multifrontal method      two-dimensional three-temperature radiative diffusion equations  
Received:  04 December 2012      Revised:  05 March 2013      Accepted manuscript online: 
PACS:  02.10.Ud (Linear algebra)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61202098, 61033009, 61170309, 91130024, and 11171039) and the China Tianyuan Mathematics Youth Fund (Grant No. 11226337).
Corresponding Authors:  Zuo Xian-Yu, Mo Ze-Yao     E-mail:  xianyu_zuo@163.com; zeyao_mo@iapcm.ac.cn

Cite this article: 

Zuo Xian-Yu (左宪禹), Mo Ze-Yao (莫则尧), Gu Tong-Xiang (谷同祥) An efficient block variant of robust structured multifrontal factorization method 2013 Chin. Phys. B 22 080201

[1] George J A 1973 SIAM J. Numer. Anal. 10 345
[2] Hoffman A J, Martin M S and Rose D J 1973 SIAM J. Numer. Anal. 10 364
[3] Bebendorf M and Hackbusch W 2003 Numer. Math. 95 1
[4] Bebendorf M 2005 Math. Comp. 74 1179
[5] Chandrasekaran S, Dewilde P and Gu M 2010 SIAM J. Matrix Anal. Appl. 31 2261
[6] Grasedyck L, Kriemann R and Le Borne S 2006 Springer LNCSE 55 661
[7] Xia J L, Chandrasekaran S, Gu M and Li X 2009 SIAM J. Matrix Anal. Appl. 31 1382
[8] Börm S, Grasedyck L and Hackbusch W 2002 Computing 69 1
[9] Eidelman Y and Gohberg If 1999 Integral Equations Operator Theory 34 293
[10] Hackbusch W 1999 Computing 62 89
[11] Vandebril R, Van Barel M, Golub G and Mastronardi N 2005 A Bibliography on Semiseparable Matrices Calcolo 42 249
[12] Polizzi E and Sameh A 2006 Parallel Comput. 32 177
[13] Sambavarama S R, Sarin V, Sameh A and Grama A 2003 Parallel Comput. 29 1261
[14] Wang S, Li X S, Xia J L, Situ Y and de Hoop M V 2012 Revised SIAM J. Sci. Comput.
[15] Xia J L 2012 High-Perform. Sci. Comput. (Berlin: Springer) p. 199
[16] Duff I S and Reid J K 1983 ACM Bans. Math. Software 9 302
[17] Liu J W H 1992 SIAM Rev. 34 82
[18] Xia J L and Gu M 2010 SIAM J. Matrix Anal. Appl. 31 2899
[19] Pei W B 2007 J. Comm. Comput. Phys. 2 255
[20] An H B, Mo Z Y, Xu X W and Liu X 2009 J. Comput. Phys. 228 3268
[21] Baldwin C, Brown P N, Falgout R D, Graziani F and Jones J 1999 J. Comput. Phys. 154 1
[22] Fu S W, Fu H Q, Shen L J, Huang S K and Chen G N 1998 Chin. J. Comput. Phys. 15 489 (in Chinese)
[23] Gu T X, Dai Z H, Hang X D, Fu S W and Liu X P 2005 Chin. J. Comput. Phys. 22 471 (in Chinese)
[24] Mo Z Y, Fu S W and Shen L J 2000 Chin. J. Comput. Phys. 17 625 (in Chinese)
[25] Mo Z Y, Shen L J and Wittum G 2004 Int. J. Comp. Math. 81 361
[26] Zhang R P, Yu X J and Zhu J 2012 Chin. Phys. Lett. 29 110201
[27] Zhao G Z, Yu X J and Zhang R P 2013 Chin. Phys. B 22 020202
[28] Wu G C 2012 Chin. Phys. B 21 120504
[29] METIS http://glaros.dtc.umn.edu/gkhome/views/metis
[30] Parter S V 1961 SIAM Rev. 3 119
[31] Tewarson R P 1967 SIAM Rev. 9 91
[32] Schmitz P and Ying L 2012http://www.ma.utexas.edu/users/lexing/publications/direct2d.pdf
[33] Mo Z Y, Zhang A Q, Cao X L, Liu Q K, Xu X W, An H B, Pei W B and Zhu S P 2010 Front. Comp. Sci. China 4 480
[1] Exact solutions of stochastic fractional Korteweg de-Vries equation with conformable derivatives
Hossam A. Ghany, Abd-Allah Hyder, M Zakarya. Chin. Phys. B, 2020, 29(3): 030203.
[2] Theoretical calculation and experiment of microwave electromagnetic property of Ni(C) nanocapsules
Dan-Feng Zhang(张丹枫), Zhi-Feng Hao(郝志峰), Bi Zeng(曾碧), Yan-Nan Qian(钱艳楠), Ying-Xin Huang(黄颖欣), Zhen-Da Yang(杨振大). Chin. Phys. B, 2016, 25(4): 040201.
[3] Linear-fitting-based similarity coefficient map for tissue dissimilarity analysis in T2*-w magnetic resonance imaging
Yu Shao-De (余绍德), Wu Shi-Bin (伍世宾), Wang Hao-Yu (王浩宇), Wei Xin-Hua (魏新华), Chen Xin (陈鑫), Pan Wan-Long (潘万龙), Hu Jiani, Xie Yao-Qin (谢耀钦). Chin. Phys. B, 2015, 24(12): 128711.
[4] Two mutually conjugated tripartite entangled states and their fractional Fourier transformation kernel
LÜ Cui-Hong(吕翠红), Fan Hong-Yi(范洪义), and Jiang Nian-Quan(姜年权). Chin. Phys. B, 2010, 19(12): 120303.
[5] Atomic coherent states as energy eigenstates of a Hamiltonian describing a two-dimensional anisotropic harmonic potential in a uniform magnetic field
Meng Xiang-Guo(孟祥国), Wang Ji-Suo(王继锁), and Liang Bao-Long(梁宝龙). Chin. Phys. B, 2010, 19(12): 124205.
[6] Study on tapered crossed subwavelength gratings by Fourier modal method
Chen Xi(陈熙), Zhong Yuan(钟源), Wang Qing(王青), Zhang Ye-Jin(张冶金), and Chen Liang-Hui(陈良惠). Chin. Phys. B, 2010, 19(10): 104101.
[7] Two new integrable couplings of the soliton hierarchies with self-consistent sources
Xia Tie-Cheng(夏铁成). Chin. Phys. B, 2010, 19(10): 100303.
[8] Preliminary analysis of resonance effect by Helmholtz–Schrödinger method
Yan Er-Yan(闫二艳), Meng Fan-Bao(孟凡宝), Ma Hong-Ge(马弘舸), and Chen Chao-Yang(陈朝阳). Chin. Phys. B, 2010, 19(10): 100304.
[9] Bound states of the Schrödinger equation for the Pöschl–Teller double-ring-shaped Coulomb potential
Lu Fa-Lin(陆法林) and Chen Chang-Yuan(陈昌远). Chin. Phys. B, 2010, 19(10): 100309.
[10] H$\infty$ consensus control of a class of second-order multi-agent systems without relative velocity measurement
Zhang Wen-Guang (张文广), Zeng De-Liang (曾德良), Guo Zhen-Kai (郭振凯). Chin. Phys. B, 2010, 19(7): 070518.
[11] The super-classical-Boussinesq hierarchy and its super-Hamiltonian structure
Tao Si-Xing (陶司兴), Xia Tie-Cheng (夏铁成). Chin. Phys. B, 2010, 19(7): 070202.
[12] Normal coordinate in harmonic crystal obtained by virtue of the classical correspondence of the invariant eigen-operator
Meng Xiang-Guo(孟祥国), Fan Hong-Yi(范洪义), and Wang Ji-Suo(王继锁). Chin. Phys. B, 2010, 19(7): 070303.
[13] The symmetries of wave equations on new lattices
He Yu-Fang(何玉芳), Fu Jing-Li(傅景礼), and Li Xiao-Wei(李晓伟). Chin. Phys. B, 2010, 19(6): 060301.
[14] Relationship between group velocity and symmetry of photonic crystals
Ye Wei-Min(叶卫民), Luo Zhang(罗章), Yuan Xiao-Dong(袁晓东), and Zeng Chun(曾淳) . Chin. Phys. B, 2010, 19(5): 054215.
[15] Energy eigenvalues from an analytical transfer matrix method
He Ying(何英), Zhang Fan-Ming(张凡明), Yang Yan-Fang(杨艳芳), and Li Chun-Fang(李春芳). Chin. Phys. B, 2010, 19(4): 040306.
No Suggested Reading articles found!