CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Topology-like dynamical behavior of magnetization reversal inexchange-bias systems |
Su Yuan-Chang (苏垣昌)a, Zhang Li-Juan (张丽娟)a, Yang Xin (杨鑫)b, Pan Jing (潘靖)a, Hu Jing-Guo (胡经国)a |
a College of Physics Science and Technology, Yangzhou University, Yangzhou 225002, China; b School of Physics and Technology, Nanjing Normal University, Nanjing 210023, China |
|
|
Abstract In an exchange-bias system, the barriers with intrinsic potential energy may be asymmetric due to unidirectional anisotropy. Base on Stoner-Wohlfarth model, we show that the asymmetric barriers may lead to four kinds of dynamical process underlying the hysteresis-loop measurement. These kinds of dynamical process are different in a topology-like property, which can be controlled by the orientation of the external field. In our study, a new analysis approach has been proposed to reveal the dynamical behaviors of magnetization reversal. With this approach, coercivity, exchange-bias field, and asymmetry of hysteresis loop can be quantitatively obtained.
|
Received: 20 November 2012
Revised: 31 December 2012
Accepted manuscript online:
|
PACS:
|
75.70.Cn
|
(Magnetic properties of interfaces (multilayers, superlattices, heterostructures))
|
|
75.30.Gw
|
(Magnetic anisotropy)
|
|
75.30.Et
|
(Exchange and superexchange interactions)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10974170 and 11104239) and the Natural Science Foundation of Jiangsu Province, China (Grant No. 09KJB140011). |
Corresponding Authors:
Hu Jing-Guo
E-mail: jghu@yzu.edu.cn
|
Cite this article:
Su Yuan-Chang (苏垣昌), Zhang Li-Juan (张丽娟), Yang Xin (杨鑫), Pan Jing (潘靖), Hu Jing-Guo (胡经国) Topology-like dynamical behavior of magnetization reversal inexchange-bias systems 2013 Chin. Phys. B 22 077503
|
[1] |
Meiklejohn W H and Bean C P 1956 Phys. Rev. 102 1413
|
[2] |
Noguès J and Schuller I K 1999 J. Magn. Magn. Mater. 192 203
|
[3] |
Soeya S, Hoshiya H, Arai R and Fuyama M 1997 J. Appl. Phys. 81 6488
|
[4] |
Takano K, Kodama R H, Berkowitz A E, Cao W and Thomas G 1998 J. Appl. Phys. 83 6888
|
[5] |
Fitzsimmons M R, Yashar P, Leighton C, Schuller I K, Noguès J, Majkrzak C F and Dura J A 2000 Phys. Rev. Lett. 84 3986
|
[6] |
Hoffmann A 2004 Phys. Rev. Lett. 93 097203
|
[7] |
Radu F, Westphalen A, Theis-Br'ohl K and Zabel H 2006 J. Phys: Condens. Matter 18 L29
|
[8] |
Cai J and Lai W 2001 Chin. Phys. Lett. 18 1651
|
[9] |
Lu Z, Li T, Qiu J, Xun K, Shen H, Li Z and Shen D 1999 Chin. Phys. Lett. 16 65
|
[10] |
Camarero J, Sort J, Hoffmann A, García-Martín J M, Dieny B, Miranda R and Noguès J 2005 Phys. Rev. Lett. 95 057204
|
[11] |
Hu J G, Jin G J, Hu A and Ma Y Q 2004 Eur. Phys. J. B 40 265
|
[12] |
Beckmann B, Usadel K D and Nowak U 2006 Phys. Rev. B 74 054431
|
[13] |
McCord J, Hamann C, Schäfer R, Schultz L and Mattheis R 2008 Phys. Rev. B 78 094419
|
[14] |
Jimènez E, Camarero J, Sort J, Noguès J, Mikuszeit N, García-Martín J M, Hoffmann A, Dieny B and Miranda R 2009 Phys. Rev. B 80 014415
|
[15] |
Su Y, Li M, Pan J and Hu J 2012 J. Magn. Magn. Mater. 324 3802
|
[16] |
Pan J, Su Y C and Hu J G 2012 J. Magn. Magn. Mater. 324 1622
|
[17] |
Krivorotov I N, Leighton C, Noguès J, Schuller I K and Dahlberg E D 2002 Phys. Rev. B 65 100402
|
[18] |
Mewes T, Nembach H, Fassbender J, Hillebrands B, Kim J V and Stamps R L 2003 Phys. Rev. B 67 104422
|
[19] |
Tillmanns A, Oertker S, Beschoten B, Guntherodt G, Eisenmenger J and Schuller I K 2008 Phys. Rev. B 78 012401
|
[20] |
McCord J, Schäfer R, Mattheis R and Barholz K U 2003 J. Appl. Phys. 93 5491
|
[21] |
Yang P Y, Song C, Fan B, Zeng F and Pan F 2009 J. Appl. Phys. 106 013902
|
[22] |
Saha J, Garello K, Viala B, Marty A and Vukadinovic N 2010 Phys. Rev. B 81 024417
|
[23] |
Xu X Y, Tian H Y, Qian X and Hu J G 2009 J. Appl. Phys. 106 093910
|
[24] |
Gao T R, Yang D Z, Zhou S M, Chantrell R, Asselin P, Du J and Wu X S 2007 Phys. Rev. Lett. 99 057201
|
[25] |
Zhang X, Li L, Zhan Y, Li B and Pu F 1997 Chin. Phys. Lett. 14 789
|
[26] |
Zhang X, Li L, Li B and Pu F 1998 Chin. Phys. 7 518
|
[27] |
Stoner E C and Wohlfarth E P 1948 Phil. Trans. R. Soc. A 240 599
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|